Contribution of hydrophobic interactions to the folding and fibrillation of histone H1 and its carboxy-terminal domain

2012 ◽  
Vol 180 (1) ◽  
pp. 101-109 ◽  
Author(s):  
Alicia Roque ◽  
Nuria Teruel ◽  
Rita López ◽  
Inma Ponte ◽  
Pedro Suau
2008 ◽  
Vol 36 (14) ◽  
pp. 4719-4726 ◽  
Author(s):  
Alicia Roque ◽  
Inma Ponte ◽  
José Luis R. Arrondo ◽  
Pedro Suau

Life ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 674
Author(s):  
Francesco Capriglia ◽  
Francesca Rizzo ◽  
Giuseppe Petrosillo ◽  
Veronica Morea ◽  
Giulia d’Amati ◽  
...  

The m.3243A>G mutation within the mitochondrial mt-tRNALeu(UUR) gene is the most prevalent variant linked to mitochondrial encephalopathy with lactic acidosis and stroke-like episodes (MELAS) syndrome. This pathogenic mutation causes severe impairment of mitochondrial protein synthesis due to alterations of the mutated tRNA, such as reduced aminoacylation and a lack of post-transcriptional modification. In transmitochondrial cybrids, overexpression of human mitochondrial leucyl-tRNA synthetase (LARS2) has proven effective in rescuing the phenotype associated with m.3243A>G substitution. The rescuing activity resides in the carboxy-terminal domain (Cterm) of the enzyme; however, the precise molecular mechanisms underlying this process have not been fully elucidated. To deepen our knowledge on the rescuing mechanisms, we demonstrated the interactions of the Cterm with mutated mt-tRNALeu(UUR) and its precursor in MELAS cybrids. Further, the effect of Cterm expression on mitochondrial functions was evaluated. We found that Cterm ameliorates de novo mitochondrial protein synthesis, whilst it has no effect on mt-tRNALeu(UUR) steady-state levels and aminoacylation. Despite the complete recovery of cell viability and the increase in mitochondrial translation, Cterm-overexpressing cybrids were not able to recover bioenergetic competence. These data suggest that, in our MELAS cell model, the beneficial effect of Cterm may be mediated by factors that are independent of the mitochondrial bioenergetics.


2021 ◽  
Author(s):  
Blase Matthew LeBlanc ◽  
Rosamaria Yvette Moreno ◽  
Edwin Escobar ◽  
Mukesh Kumar Venkat Ramani ◽  
Jennifer S Brodbelt ◽  
...  

RNA polymerase II (RNAP II) is one of the primary enzymes responsible for expressing protein-encoding genes and some small nuclear RNAs. The enigmatic carboxy-terminal domain (CTD) of RNAP II and...


2008 ◽  
Vol 8 (1) ◽  
pp. 5-12 ◽  
Author(s):  
Thomas Kernebeck ◽  
Stefan Pflanz ◽  
Peter C. Heinrich ◽  
Axel Wollmer ◽  
Joachim Grötzinger ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document