Source location-dependency site response in the Taipei Basin of Taiwan by using HVSR analysis

2020 ◽  
Vol 191 ◽  
pp. 104223
Author(s):  
Chun-Te Chen ◽  
Kuo-Liang Wen ◽  
Jyun-Yan Huang
2001 ◽  
Vol 17 (2) ◽  
pp. 313-331 ◽  
Author(s):  
Vladimir Yu Sokolov ◽  
Chin-Hsiung Loh ◽  
Kuo-Liang Wen

We calculated peak ground accelerations and response spectra for the Taipei area using stochastic simulation technique on the basis of recently obtained empirical models. The source, path and site effects were characterized separately on the basis of the analysis of a large collection of ground-motion recordings obtained since 1991 in the Taiwan area. The simple ω-squared Brune's point-source model combined with regional anelastic attenuation ( Q) and duration (τ0.9) models provide a satisfactory estimation of ground-motion parameters for rock sites. Effects of local site response are considered by means of empirical soil/bedrock spectral ratios calculated as ratios between spectra of actual earthquake records and those modeled for hypothetical “hard rock” site. The results of the simulation demonstrate that this combination of source, path and site response models provides an accurate prediction of “site- and region-dependent” ground-motion parameters for the Taipei basin for the broad range of earthquake magnitudes, distances and site conditions. The model, with a set of generic soil profiles, can be considered as an efficient tool for estimating of design input ground motion parameters in the Taipei basin both in deterministic (scenario earthquakes) and probabilistic (“site- and region-dependent” Uniform Hazard response spectra) seismic hazard assessment.


2000 ◽  
Vol 16 (3) ◽  
pp. 681-707 ◽  
Author(s):  
Vladimir Yu Sokolov ◽  
Chin-Hsiung Loh ◽  
Kuo-Liang Wen

We analyze the site response of the Taipei basin using the records obtained by the Taiwan Strong Ground Motion Instrumentation Program (TSMIP) network. Records of 66 earthquakes of M=2.6-6.5 with a hypocentral depth varying from 1 km to 118 km and hypocentral distances of up to 150 km are studied for 35 stations located within this triangle-shaped alluvium structure. The site response is obtained in terms of spectral ratios calculated by dividing of the site spectrum by the reference spectrum estimated for a hypothetical “very hard rock” site. The recently developed empirical source scaling and attenuation models for the Taiwan region are used for the reference spectra calculation. This approach allows us to evaluate the variability of spectral ratios due to uncertainties introduced by source and propagation path effects and variability in the site response itself. The characteristics of site response in the Taipei basin depend on the properties of soil deposits and, in general, may be described by 1-D models. However, there are some peculiarities of spectral ratios that show the influence of subsurface topography.


2014 ◽  
Vol 9 (5) ◽  
pp. 1060
Author(s):  
Frank Zoko Ble ◽  
Matti Lehtonen ◽  
Ari Sihvola ◽  
Charles Kim

2020 ◽  
Vol 19 (3-5) ◽  
pp. 191-206
Author(s):  
Trae L Jennette ◽  
Krish K Ahuja

This paper deals with the topic of upper surface blowing noise. Using a model-scale rectangular nozzle of an aspect ratio of 10 and a sharp trailing edge, detailed noise contours were acquired with and without a subsonic jet blowing over a flat surface to determine the noise source location as a function of frequency. Additionally, velocity scaling of the upper surface blowing noise was carried out. It was found that the upper surface blowing increases the noise significantly. This is a result of both the trailing edge noise and turbulence downstream of the trailing edge, referred to as wake noise in the paper. It was found that low-frequency noise with a peak Strouhal number of 0.02 originates from the trailing edge whereas the high-frequency noise with the peak in the vicinity of Strouhal number of 0.2 originates near the nozzle exit. Low frequency (low Strouhal number) follows a velocity scaling corresponding to a dipole source where as the high Strouhal numbers as quadrupole sources. The culmination of these two effects is a cardioid-shaped directivity pattern. On the shielded side, the most dominant noise sources were at the trailing edge and in the near wake. The trailing edge mounting geometry also created anomalous acoustic diffraction indicating that not only is the geometry of the edge itself important, but also all geometry near the trailing edge.


2021 ◽  
pp. 875529302110187
Author(s):  
Jeff Bayless

The anelastic attenuation term found in ground motion prediction equations (GMPEs) represents the distance dependence of the effect of intrinsic and scattering attenuation on the wavefield as it propagates through the crust and contains the frequency-dependent quality factor, [Formula: see text], which is an inverse measure of the effective anelastic attenuation. In this work, regional estimates of [Formula: see text] in Central and Eastern North America (CENA) are developed using the NGA-East regionalization. The technique employed uses smoothed Fourier amplitude spectrum (FAS) data from well-recorded events in CENA as collected and processed by NGA-East. Regional [Formula: see text] is estimated using an assumption of average geometrical spreading applicable to the distance ranges considered. Corrections for the radiation pattern effect and for site response based on [Formula: see text] result in a small but statistically significant improvement to the residual analysis. Apparent [Formula: see text] estimates from multiple events are combined within each region to develop the regional models. Models are provided for three NGA-East regions: the Gulf Coast, Central North America, and the Appalachian Province. Consideration of the model uncertainties suggests that the latter two regions could be combined. There were not sufficient data to adequately constrain the model in the Atlantic Coastal Plain region. Tectonically stable regions are usually described by higher [Formula: see text] and weaker frequency dependence ([Formula: see text]), while active regions are typically characterized by lower [Formula: see text] and stronger frequency dependence, and the results are consistent with these expectations. Significantly different regional [Formula: see text] is found for events with data recorded in multiple regions, which supports the NGA-East regionalization. An inspection of two well-recorded events with data both in the Mississippi embayment and in southern Texas indicates that the Gulf Coast regionalization by Cramer in 2017 may be an improvement to that of NGA-East for anelastic attenuation. The [Formula: see text] models developed serve as epistemic uncertainty alternatives in CENA based on a literature review and a comparison with previously published models.


2021 ◽  
Vol 103 ◽  
pp. 104300
Author(s):  
Kai Zhang ◽  
Baoping Tang ◽  
Lei Deng ◽  
Xiaoxia Yu ◽  
Jing Wei

Author(s):  
Yen-Hsiang Chang ◽  
Chi-Chin Tsai ◽  
Chien-Chia Huang ◽  
Duhee Park

Sign in / Sign up

Export Citation Format

Share Document