Constraints on the early Mesozoic denudation of the Qinling orogen from Upper Triassic-Lower Jurassic successions in the Zigui Basin, central China

2020 ◽  
Vol 195 ◽  
pp. 104360 ◽  
Author(s):  
Rong Chai ◽  
Jianghai Yang ◽  
Yuansheng Du ◽  
Jia Liu ◽  
Feng He ◽  
...  
1978 ◽  
Vol 15 (1) ◽  
pp. 99-116 ◽  
Author(s):  
William B. Travers

The Lower Jurassic, Ashcroft Formation contains a thick section of carbonaceous marine shale and a few graded sandstones. Along the south and east margins of the Ashcroft Basin, Ashcroft strata rest unconformably on calc-alkaline and alkaline volcanic flows and sediments of the Upper Triassic, Nicola Group. On the west margin Nicola and Ashcroft strata lie against mélange of the Cache Creek Group. This contact is faulted in some places, but it may be a depositional unconformity elsewhere.South of Cache Creek village, overturned allochthons of Nicola strata were placed on top of Ashcroft beds in Early Jurassic time before Ashcroft sediments were lithified. Turbidity currents flowed southeast contemporaneous with sliding or thrusting of allochthons.Near the Guichon Creek Batholith, the Ashcroft Formation contains a disconformity that separates Sinemurian–Pliensbachian from Callovian strata. However, in the western part of the Ashcroft basin strata appear continuous from Sinemurian–Pliensbachian to Callovian. The Guichon Creek Batholith was emplaced into Nicola strata along the eastern edge of the Ashcroft Basin about 200 Ma ago (late Sinemurian*) and was quickly unroofed to provide granitic debris to the basin.The Ashcroft Basin appears to have been an early Mesozoic outer arc basin. It formed seaward of calc-alkaline magmatism and landward of and possibly on top of a mélange. Middle or Late Triassic radiolaria found in the Cache Creek show that deformation of the mélange took place as late as Late Triassic time. Arc-directed thrusting and sliding may be gravity processes due to elevation of the outer arc ridge during subduction.


2021 ◽  
pp. 104123
Author(s):  
Chonghao Liu ◽  
Jiajun Liu ◽  
Emmanuel John M. Carranza ◽  
Jianping Wang ◽  
Degao Zhai ◽  
...  

1995 ◽  
Vol 7 (1) ◽  
pp. 99-113 ◽  
Author(s):  
J.L. Smellie ◽  
M. Liesa ◽  
J.A. Muñoz ◽  
F. Sàbat ◽  
R. Pallàs ◽  
...  

Livingston Island contains several, distinctive sedimentary and volcanic sequences, which document the history and evolution of an important part of the South Shetland Islands magmatic arc. The turbiditic, late Palaeozoic–early Mesozoic Miers Bluff Formation (MBF) is divided into the Johnsons Dock and Napier Peak members, which may represent sedimentation in upper and lower mid-fan settings, respectively, prior to pre-late Jurassic polyphase deformation (dominated by open folding). The Moores Peak breccias are formed largely of coarse clasts reworked from the MBF. The breccias may be part of the MBF, a separate unit, or part of the Mount Bowles Formation. The structural position is similar to the terrigenous Lower Jurassic Botany Bay Group in the northern Antarctic Peninsula, but the precise stratigraphical relationships and age are unknown. The (?) Cretaceous Mount Bowles Formation is largely volcanic. Detritus in the volcaniclastic rocks was formed mainly during phreatomagmatic eruptions and redeposited by debris flows (lahars), whereas rare sandstone interbeds are arkosic and reflect a local provenance rooted in the MBF. The Pleistocene–Recent Inott Point Formation is dominated by multiple, basaltic tuff cone relicts in which distinctive vent and flank sequences are recognized. The geographical distribution of the Edinburgh Hill Formation is closely associated with faults, which may have been reactivated as dip-slip structures during Late Cenozoic extension (arc splitting).


1977 ◽  
Vol 14 (11) ◽  
pp. 2578-2592 ◽  
Author(s):  
J. W. Hillhouse

Paleomagnetic evidence indicates that the extensive early Mesozoic basalt field near McCarthy, south-central Alaska, originated far south of its present position relative to North America. Results obtained from the Middle and (or) Upper Triassic Nikolai Greenstone suggest that those basalts originated within 15° of the paleoequator. This position is at least 27° (3000 km) south of the Upper Triassic latitude predicted for McCarthy on the basis of paleomagnetic data from continental North America. The Nikolai pole, as determined from 50 flows sampled at 5 sites, is at 2.2° N, 146.1° E (α95 = 4.8°). The polarity of the pole is ambiguous, because the corresponding magnetic direction has a low inclination and a westerly declination. Therefore, the Nikolai may have originated near 15° N latitude or, alternatively, as far south as 15° S latitude. In addition to being displaced northward, the Nikolai block has been rotated roughly 90° about the vertical axis. A measure of the reliability of this pole is provided by favorable results from the following tests: (1) Within one stratigraphic section, normal and reversed directions from consecutive flows are antipolar. (2) Consistent directions were obtained from sites 30 km apart. (3) Application of the fold test indicated the magnetization was acquired before the rocks were folded. (4) The magnetizations of several pilot specimens are thermally stable up to 550 °C. The stable component is probably carried by magnetite with lamellar texture, a primary feature commonly acquired by a basalt at high temperature during initial cooling of the magma. Geologic and paleomagnetic evidence indicates that the Nikolai is allochthonous to Alaska and that, together with associated formations in southern Alaska and British Columbia, it is part of a now disrupted equatorial terrane.


Sign in / Sign up

Export Citation Format

Share Document