scholarly journals The glenoid labrum: does labral lesion location matter?

2020 ◽  
Vol 4 (4) ◽  
pp. 765-771
Author(s):  
Geoffrey T. Murphy ◽  
Patrick Lam ◽  
George A.C. Murrell
2017 ◽  
Vol 203 (6) ◽  
pp. 365-373 ◽  
Author(s):  
Crótida de la Cuadra-Blanco ◽  
Luis A. Arráez-Aybar ◽  
Jorge A. Murillo-González ◽  
Manuel E. Herrera-Lara ◽  
Juan A. Mérida-Velasco ◽  
...  

The goal of this study is to clarify the development of the long head of the biceps brachii tendon (LHBT) and to verify the existence and development of the coracoglenoid ligament. Histological preparations of 22 human embryos (7-8 weeks of development) and 43 human fetuses (9-12 weeks of development) were studied bilaterally using a conventional optical microscope. The articular interzone gives rise to the LHBT, glenoid labrum, and articular capsule. During the fetal period, it was observed that in 50 cases (58%), the LHBT originated from both the glenoid labrum and the scapula, while in 36 cases (42%), it originated only from the glenoid labrum. The coracoglenoid ligament, first described by Sappey in 1867, is a constant structure that originates at the base of the coracoid process and projects toward the glenoid labrum zone, which is related to the origin of the LHBT. The coracoglenoid ligament was more easily identifiable in the 36 cases in which the LHBT originated only from the glenoid labrum. We suggest that the coracoglenoid ligament is a constant anatomical structure, is not derived from the articular interzone unlike the LHBT, and contributes to the fixation of the glenoid labrum in the scapula in cases in which the LHBT originated only from the glenoid labrum. We postulate that, when the LHBT is fixed only at the glenoid labrum, alterations in the coracoglenoid ligament could lead to a less sufficient attachment of the glenoid labrum to the scapula which could predispose to a superior labral lesion.


2010 ◽  
Vol 41 (9) ◽  
pp. 2
Author(s):  
SHARON WORCESTER
Keyword(s):  

2020 ◽  
Vol 19 (10) ◽  
pp. 943-948
Author(s):  
Peter Lio ◽  
Andreas Wollenberg ◽  
Jacob Thyssen ◽  
Evangeline Pierce ◽  
Maria Rueda ◽  
...  

1989 ◽  
Vol 152 (1) ◽  
pp. 201-202 ◽  
Author(s):  
M Rafii ◽  
H Firooznia
Keyword(s):  

2021 ◽  
Vol 23 (1) ◽  
Author(s):  
Angel T. Chan ◽  
William Dinsfriend ◽  
Jiwon Kim ◽  
Brian Yum ◽  
Razia Sultana ◽  
...  

Abstract Background Late gadolinium enhancement (LGE) cardiovascular magnetic resonance (CMR) is widely used to identify cardiac neoplasms, for which diagnosis is predicated on enhancement stemming from lesion vascularity: Impact of contrast-enhancement pattern on clinical outcomes is unknown. The objective of this study was to determine whether cardiac metastasis (CMET) enhancement pattern on LGE-CMR impacts prognosis, with focus on heterogeneous lesion enhancement as a marker of tumor avascularity. Methods Advanced (stage IV) systemic cancer patients with and without CMET matched (1:1) by cancer etiology underwent a standardized CMR protocol. CMET was identified via established LGE-CMR criteria based on lesion enhancement; enhancement pattern was further classified as heterogeneous (enhancing and non-enhancing components) or diffuse and assessed via quantitative (contrast-to-noise ratio (CNR); signal-to-noise ratio (SNR)) analyses. Embolic events and mortality were tested in relation to lesion location and contrast-enhancement pattern. Results 224 patients were studied, including 112 patients with CMET and unaffected (CMET -) controls matched for systemic cancer etiology/stage. CMET enhancement pattern varied (53% heterogeneous, 47% diffuse). Quantitative analyses were consistent with lesion classification; CNR was higher and SNR lower in heterogeneously enhancing CMET (p < 0.001)—paralleled by larger size based on linear dimensions (p < 0.05). Contrast-enhancement pattern did not vary based on lesion location (p = NS). Embolic events were similar between patients with diffuse and heterogeneous lesions (p = NS) but varied by location: Patients with right-sided lesions had threefold more pulmonary emboli (20% vs. 6%, p = 0.02); those with left-sided lesions had lower rates equivalent to controls (4% vs. 5%, p = 1.00). Mortality was higher among patients with CMET (hazard ratio [HR] = 1.64 [CI 1.17–2.29], p = 0.004) compared to controls, but varied by contrast-enhancement pattern: Diffusely enhancing CMET had equivalent mortality to controls (p = 0.21) whereas prognosis was worse with heterogeneous CMET (p = 0.005) and more strongly predicted by heterogeneous enhancement (HR = 1.97 [CI 1.23–3.15], p = 0.005) than lesion size (HR = 1.11 per 10 cm [CI 0.53–2.33], p = 0.79). Conclusions Contrast-enhancement pattern and location of CMET on CMR impacts prognosis. Embolic events vary by CMET location, with likelihood of PE greatest with right-sided lesions. Heterogeneous enhancement—a marker of tumor avascularity on LGE-CMR—is a novel marker of increased mortality risk.


2021 ◽  
Vol 29 (1) ◽  
pp. 230949902110011
Author(s):  
Kyoko Okuno ◽  
Yukihiro Kitai ◽  
Toru Shibata ◽  
Hiroshi Arai

Purpose: To investigate the risk factors for hip displacement in patients with dyskinetic cerebral palsy (DCP). Methods: We evaluated 81 patients with DCP, 45 males and 36 females, aged 10–22 years, risk factors for hip displacement were evaluated using multivariate logistic regression analysis with primary brain lesions, Gross Motor Function Classification System (GMFCS) level, gestational age, birth weight, Cobb’s angle, and complication of epilepsy as independent factors. Hip displacement was defined as migration percentage >30%. Primary brain lesions were classified into globus pallidus (GP), thalamus and putamen (TP), and others using brain magnetic resonance imaging (MRI). Perinatal and clinical features were compared between patients with GP lesions and those with TP lesions. Results: Hip displacement was observed in 53 patients (67%). Higher GMFCS levels (p = 0.013, odds ratio [OR] 2.6) and the presence of GP lesions (p = 0.04, OR 16.5) were independent risk factors for hip displacement. Patients with GP lesions showed significantly higher GMFCS levels, more frequent hip displacement, and lower gestational age and birth weight than those with TP lesions. Conclusion: Primary brain lesion location may be an important factor in predicting hip displacement among patients with DCP. Appropriate risk assessment using brain MRI may contribute to the early detection and intervention of hip displacement because brain lesion location can be assessed during infancy before GMFCS level is decided.


Sign in / Sign up

Export Citation Format

Share Document