Lesion Location, Age Help Predict Multiple BCC Risk

2010 ◽  
Vol 41 (9) ◽  
pp. 2
Author(s):  
SHARON WORCESTER
Keyword(s):  
2020 ◽  
Vol 19 (10) ◽  
pp. 943-948
Author(s):  
Peter Lio ◽  
Andreas Wollenberg ◽  
Jacob Thyssen ◽  
Evangeline Pierce ◽  
Maria Rueda ◽  
...  

2021 ◽  
Vol 23 (1) ◽  
Author(s):  
Angel T. Chan ◽  
William Dinsfriend ◽  
Jiwon Kim ◽  
Brian Yum ◽  
Razia Sultana ◽  
...  

Abstract Background Late gadolinium enhancement (LGE) cardiovascular magnetic resonance (CMR) is widely used to identify cardiac neoplasms, for which diagnosis is predicated on enhancement stemming from lesion vascularity: Impact of contrast-enhancement pattern on clinical outcomes is unknown. The objective of this study was to determine whether cardiac metastasis (CMET) enhancement pattern on LGE-CMR impacts prognosis, with focus on heterogeneous lesion enhancement as a marker of tumor avascularity. Methods Advanced (stage IV) systemic cancer patients with and without CMET matched (1:1) by cancer etiology underwent a standardized CMR protocol. CMET was identified via established LGE-CMR criteria based on lesion enhancement; enhancement pattern was further classified as heterogeneous (enhancing and non-enhancing components) or diffuse and assessed via quantitative (contrast-to-noise ratio (CNR); signal-to-noise ratio (SNR)) analyses. Embolic events and mortality were tested in relation to lesion location and contrast-enhancement pattern. Results 224 patients were studied, including 112 patients with CMET and unaffected (CMET -) controls matched for systemic cancer etiology/stage. CMET enhancement pattern varied (53% heterogeneous, 47% diffuse). Quantitative analyses were consistent with lesion classification; CNR was higher and SNR lower in heterogeneously enhancing CMET (p < 0.001)—paralleled by larger size based on linear dimensions (p < 0.05). Contrast-enhancement pattern did not vary based on lesion location (p = NS). Embolic events were similar between patients with diffuse and heterogeneous lesions (p = NS) but varied by location: Patients with right-sided lesions had threefold more pulmonary emboli (20% vs. 6%, p = 0.02); those with left-sided lesions had lower rates equivalent to controls (4% vs. 5%, p = 1.00). Mortality was higher among patients with CMET (hazard ratio [HR] = 1.64 [CI 1.17–2.29], p = 0.004) compared to controls, but varied by contrast-enhancement pattern: Diffusely enhancing CMET had equivalent mortality to controls (p = 0.21) whereas prognosis was worse with heterogeneous CMET (p = 0.005) and more strongly predicted by heterogeneous enhancement (HR = 1.97 [CI 1.23–3.15], p = 0.005) than lesion size (HR = 1.11 per 10 cm [CI 0.53–2.33], p = 0.79). Conclusions Contrast-enhancement pattern and location of CMET on CMR impacts prognosis. Embolic events vary by CMET location, with likelihood of PE greatest with right-sided lesions. Heterogeneous enhancement—a marker of tumor avascularity on LGE-CMR—is a novel marker of increased mortality risk.


2021 ◽  
Vol 29 (1) ◽  
pp. 230949902110011
Author(s):  
Kyoko Okuno ◽  
Yukihiro Kitai ◽  
Toru Shibata ◽  
Hiroshi Arai

Purpose: To investigate the risk factors for hip displacement in patients with dyskinetic cerebral palsy (DCP). Methods: We evaluated 81 patients with DCP, 45 males and 36 females, aged 10–22 years, risk factors for hip displacement were evaluated using multivariate logistic regression analysis with primary brain lesions, Gross Motor Function Classification System (GMFCS) level, gestational age, birth weight, Cobb’s angle, and complication of epilepsy as independent factors. Hip displacement was defined as migration percentage >30%. Primary brain lesions were classified into globus pallidus (GP), thalamus and putamen (TP), and others using brain magnetic resonance imaging (MRI). Perinatal and clinical features were compared between patients with GP lesions and those with TP lesions. Results: Hip displacement was observed in 53 patients (67%). Higher GMFCS levels (p = 0.013, odds ratio [OR] 2.6) and the presence of GP lesions (p = 0.04, OR 16.5) were independent risk factors for hip displacement. Patients with GP lesions showed significantly higher GMFCS levels, more frequent hip displacement, and lower gestational age and birth weight than those with TP lesions. Conclusion: Primary brain lesion location may be an important factor in predicting hip displacement among patients with DCP. Appropriate risk assessment using brain MRI may contribute to the early detection and intervention of hip displacement because brain lesion location can be assessed during infancy before GMFCS level is decided.


2021 ◽  
pp. 154596832110175
Author(s):  
Elizabeth L. Dvorak ◽  
Davetrina S. Gadson ◽  
Elizabeth H. Lacey ◽  
Andrew T. DeMarco ◽  
Peter E. Turkeltaub

Background Health-related quality of life (HRQL) in stroke survivors is related to numerous factors, but more research is needed to delineate factors related to HRQL in people with aphasia. Objective To examine the relationship between HRQL and demographic factors, impairment-based measures, and lesion characteristics in chronic aphasia. Methods A total of 41 left-hemisphere stroke survivors with aphasia underwent cognitive testing and magnetic resonance imaging. To address relationships with demographic and impairment-based measures, test scores were entered into a principal component analysis (PCA) and multiple linear regression was performed for overall and domain (physical, communication, psychosocial) scores of the Stroke and Aphasia Quality of Life Scale (SAQOL-39g). Independent variables included factor scores from the PCA, motricity, lesion volume, depressed mood, and demographic variables. To address relationships with lesion location, multivariate support vector regression lesion-symptom mapping (SVR-LSM) was used to localize lesions associated with SAQOL-39g scores. Results The PCA yielded 3 factors, which were labeled Language Production, Nonlinguistic Cognition, and Language Comprehension. Multiple linear regression revealed that depression symptoms predicted lower SAQOL-39g average and domain scores. Lower motricity scores predicted lower SAQOL-39g average and physical scores, and lower Language Production factor scores predicted lower communication scores. SVR-LSM demonstrated that basal ganglia lesions were associated with lower physical scores, and inferior frontal lesions were associated with lower psychosocial scores. Conclusions HRQL in chronic left-hemisphere stroke survivors with aphasia relates to lesion location, depression symptoms, and impairment-based measures. This information may help identify individuals at risk for specific aspects of low HRQL and facilitate targeted interventions to improve well-being.


PM&R ◽  
2021 ◽  
Author(s):  
Elizabeth R. Skidmore ◽  
Minmei Shih ◽  
Lauren Terhorst ◽  
Erin O'Connor

2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
M Moshage ◽  
S Smolka ◽  
S Achenbach ◽  
F Ammon ◽  
P Ferstl ◽  
...  

Abstract Background The accuracy of CT-derived FFR (FFRCT) has been repeatedly reported. However, the influence of lesion location on accuracy is unknown. Therefore, we evaluated the diagnostic accuracy of FFRCT to detect lesion-specific ischemia and determined the influence of lesion location (proximal vs. distal vessel segments) compared to invasively measured FFR in patients with suspected CAD. Methods A total of 136 vessels in which “Dual-Source”-CT coronary angiography had been performed due to suspected CAD and who were further referred for invasive coronary angiography with invasive FFR measurement within three months of the index CT examination were retrospectively identified and screened for inclusion in this analysis. Patients with either left main coronary artery stenoses, bifurcation or ostial stenoses were excluded. Invasive FFR was measured using a pressure wire (CERTUS®, St. Jude Medical, Minnesota, USA or Verrata®, Volcano, San Diego, USA). FFRCT was calculated using an on-site prototype (cFFR Version 3.0, Siemens Healthineers, Forchheim, Germany). All vessels were analyzed by an experienced observer blinded to the results of invasive FFR. Stenoses with invasively measured FFR ≤0.80 were classified as hemodynamically significant. We evaluated the diagnostic accuracy of FFRCT in proximal vs. non-proximal vessel segments. Proximal lesions included stenoses located in segment one, six, eleven and twelve. All other stenoses were categorized as distal lesions. Results Out of 136 coronary stenoses, 47 (35%) were located in proximal segments and 89 (65%) lesions were located in distal segments. Compared to invasive FFR, the sensitivity of FFRCT to correctly identify/exclude hemodynamically significant stenoses in proximal vessel segments was 93% (95% CI: 68–99.8%) and the specificity was 100% (95% CI: 89–100%), compared to a sensitivity of 72% (95% CI: 46.5–90%) and a specificity of 87% (95% CI: 77–94%) for FFRCT in distal lesions. The positive predictive value was 100% and the negative predictive value was 97% (95% CI: 82.8–99.5%) compared to a positive predictive value of 59% (95% CI: 42–93.9%) and a negative predictive value of 93% (95% CI: 85.4–96.3%) for proximal vs. distal vessel segment, respectively. This corresponds to an accuracy of 98% vs. 84%, respectively (p=0.02). ROC-Curve analysis showed a slightly higher – albeit non-significant – area under the curve for FFRCT to detect hemodynamic relevance in proximal lesions compared to distal lesions (AUC 0.95, p&lt;0.001 vs. AUC: 0.86, p&lt;0.001, respectively, p=0.2). Conclusion FFRCT obtained using an on-site prototype shows overall a high diagnostic accuracy for detecting lesions causing ischemia as compared to invasive FFR with a trend towards better diagnostic performance in proximal vessel segments. Funding Acknowledgement Type of funding source: None


Sign in / Sign up

Export Citation Format

Share Document