A Novel Role of Autophagy in Intestinal Epithelial Stem Cell Proliferation and Renewal

2014 ◽  
Vol 186 (2) ◽  
pp. 650 ◽  
Author(s):  
S. Shaffiey ◽  
C. Sodhi ◽  
H. Jia ◽  
M. Good ◽  
M. Neal ◽  
...  
2018 ◽  
Vol 6 (13) ◽  
pp. e13746 ◽  
Author(s):  
Weinan Zhou ◽  
Elizabeth A. Davis ◽  
Kailiang Li ◽  
Romana A. Nowak ◽  
Megan J. Dailey

Author(s):  
Luciana Petti ◽  
Giulia Rizzo ◽  
Federica Rubbino ◽  
Sudharshan Elangovan ◽  
Piergiuseppe Colombo ◽  
...  

Abstract Background Sphingosine-1-phosphate receptor 2 (S1PR2) mediates pleiotropic functions encompassing cell proliferation, survival, and migration, which become collectively de-regulated in cancer. Information on whether S1PR2 participates in colorectal carcinogenesis/cancer is scanty, and we set out to fill the gap. Methods We screened expression changes of S1PR2 in human CRC and matched normal mucosa specimens [N = 76]. We compared CRC arising in inflammation-driven and genetically engineered models in wild-type (S1PR2+/+) and S1PR2 deficient (S1PR2−/−) mice. We reconstituted S1PR2 expression in RKO cells and assessed their growth in xenografts. Functionally, we mimicked the ablation of S1PR2 in normal mucosa by treating S1PR2+/+ organoids with JTE013 and characterized intestinal epithelial stem cells isolated from S1PR2−/−Lgr5-EGFP- mice. Results S1PR2 expression was lost in 33% of CRC; in 55%, it was significantly decreased, only 12% retaining expression comparable to normal mucosa. Both colitis-induced and genetic Apc+/min mouse models of CRC showed a higher incidence in size and number of carcinomas and/or high-grade adenomas, with increased cell proliferation in S1PR2−/− mice compared to S1PR2+/+ controls. Loss of S1PR2 impaired mucosal regeneration, ultimately promoting the expansion of intestinal stem cells. Whereas its overexpression attenuated cell cycle progression, it reduced the phosphorylation of AKT and augmented the levels of PTEN. Conclusions In normal colonic crypts, S1PR2 gains expression along with intestinal epithelial cells differentiation, but not in intestinal stem cells, and contrasts intestinal tumorigenesis by promoting epithelial differentiation, preventing the expansion of stem cells and braking their malignant transformation. Targeting of S1PR2 may be of therapeutic benefit for CRC expressing high Lgr5. Graphical Abstract. Schematic drawing of the role of S1PR2 in normal mucosa and colorectal cancer. In the normal mucosa, S1PR2 is highly expressed by differentiated cells at the upper region of both colon and intestinal crypts (S1PR2 ON), but not by the undifferentiated stem cell at the base of the crypts (S1PR2 OFF), in which acts as a negative proliferative regulator promoting epithelial differentiation. Its loss leads to the expansion of stem cells and reduced levels of PTEN and Axin-2, two negative regulators respectively of PI3K/AKT and Wnt signaling that control β-catenin signaling. The translocation of β-catenin into the nucleus promotes the transcription of target genes involved in the proliferation and malignant transformation. Thereby, S1PR2 works in the intestine as a tumor suppressor


2015 ◽  
Vol 309 (11) ◽  
pp. G874-G887 ◽  
Author(s):  
Terrence E. Riehl ◽  
Srikanth Santhanam ◽  
Lynne Foster ◽  
Matthew Ciorba ◽  
William F. Stenson

Hyaluronic acid, a glycosaminoglycan in the extracellular matrix, binds to CD44 and Toll-like receptor 4 (TLR4). We previously addressed the role of hyaluronic acid in small intestinal and colonic growth in mice. We addressed the role of exogenous hyaluronic acid by giving hyaluronic acid intraperitoneally and the role of endogenous hyaluronic acid by giving PEP-1, a peptide that blocks hyaluronic acid binding to its receptors. Exogenous hyaluronic acid increased epithelial proliferation but had no effect on intestinal length. PEP-1 resulted in a shortened small intestine and colon and diminished epithelial proliferation. In the current study, we sought to determine whether the effects of hyaluronic acid on growth were mediated by signaling through CD44 or TLR4 by giving exogenous hyaluronic acid or PEP-1 twice a week from 3–8 wk of age to wild-type, CD44−/−, and TLR4−/− mice. These studies demonstrated that signaling through both CD44 and TLR4 were important in mediating the effects of hyaluronic acid on growth in the small intestine and colon. Extending our studies to early postnatal life, we assessed the effects of exogenous hyaluronic acid and PEP-1 on Lgr5+ stem cell proliferation and crypt fission. Administration of PEP-1 to Lgr5+ reporter mice from postnatal day 7 to day 14 decreased Lgr5+ cell proliferation and decreased crypt fission. These studies indicate that endogenous hyaluronic acid increases Lgr5+ stem cell proliferation, crypt fission, and intestinal lengthening and that these effects are dependent on signaling through CD44 and TLR4.


Sign in / Sign up

Export Citation Format

Share Document