M1 Macrophage Activated by Notch Signal Pathway Contributed to Ventilator-Induced Lung Injury in Chronic Obstructive Pulmonary Disease Model

2019 ◽  
Vol 244 ◽  
pp. 358-367 ◽  
Author(s):  
Hongping Huang ◽  
Hui Feng ◽  
Dong Zhuge
2021 ◽  
Vol 5 (5) ◽  
pp. 90-95
Author(s):  
Jie Meng ◽  
Xuanguo Zhang

Objective: Study the mechanism of Mulberry Root Bark Decoction in the treatment of COPD based on network pharmacology. Methods: The active components and predictive targets of Mulberry Root Bark Decoction were screened by TCMSP database. The disease targets of COPD were collected by searching GeneCards, DisGeNET, PhamGKB and TTD databases. Using R language to draw Venn diagram, and get the key target of Mulberry Root Bark Decoction in the treatment of COPD. Cytoscape was used to construct the regulatory network of drug active ingredient disease target. The key targets were imported into string database to construct protein-protein interaction network, and the core targets were obtained by network topology analysis with Cytoscape software. Finally, the Bioconductor platform and R language were used for GO and KEGG enrichment analysis. Results: There were 142 active components and 255 drug targets in Mulberry Root Bark Decoction. 1941 COPD targets were retrieved. There were 129 common targets of Mulberry Root Bark Decoction and COPD; Eight core targets of PPI network were obtained. GO function analysis is involved in oxidative stress, cellular chemical stress and other biological processes. Cell components such as cell membrane raft and membrane region involve molecular functions such as ubiquitin like protein ligase and DNA binding transcription factor. KEGG mainly includes PI3K-Akt signal pathway, tumor necrosis factor signal pathway, IL-17 signal pathway, etc. Conclusion: Quercetin, luteolin, kaempferol, wogonin and other active components in Mulberry Root Bark Decoction act on PI3K / Akt, TNF, IL-17, TCR and other signal pathways through Jun, TP53, MAPK1, IL6 and other targets to play an anti-inflammatory and reduce oxidative stress response role. The results of this study can provide a reference for further study on the mechanism of Mulberry Root Bark Decoction in the treatment of chronic obstructive pulmonary disease.


2020 ◽  
Vol 205 (9) ◽  
pp. 2489-2498 ◽  
Author(s):  
Elizabeth Perez ◽  
Jonathan R. Baker ◽  
Silvana Di Giandomenico ◽  
Pouneh Kermani ◽  
Jacqueline Parker ◽  
...  

2020 ◽  
Vol 245 (3) ◽  
pp. 190-200 ◽  
Author(s):  
Liang Wang ◽  
Jing Meng ◽  
Caicai Wang ◽  
Chao Yang ◽  
Yuan Wang ◽  
...  

Smoking has become a major cause of chronic obstructive pulmonary disease through weakening of the respiratory mucus-ciliary transport system, impairing cough reflex sensitivity, and inducing inflammation. Recent researches have indicated that hydrogen sulfide is essential in the development of various lung diseases. However, the effect and mechanism of hydrogen sulfide on cigarette smoke-induced chronic obstructive pulmonary disease have not been reported. In this study, rats were treated with cigarette smoke to create a chronic obstructive pulmonary disease model followed by treatment with a low concentration of hydrogen sulfide. Pulmonary function, histopathological appearance, lung edema, permeability, airway remodeling indicators, oxidative products/antioxidases levels, inflammatory factors in lung, cell classification in bronchoalveolar lavage fluid were measured to examine the effect of hydrogen sulfide on chronic obstructive pulmonary disease model. The results showed that hydrogen sulfide effectively improved pulmonary function and reduced histopathological changes, lung edema, and permeability. Airway remodeling, oxidative stress, and inflammation were also reduced by hydrogen sulfide treatment. To understand the mechanisms, we measured the expression of TGF-β1, TGF-βIand TGF-βII receptors and Smad7 and phosphorylation of Smad2/Smad3. The results indicated that the TGF-β1 and Smad were activated in cigarette smoke-induced chronic obstructive pulmonary disease model, but inhibited by hydrogen sulfide. In conclusion, this study showed that hydrogen sulfide treatment alleviated cigarette smoke-induced chronic obstructive pulmonary disease through inhibition of the TGF-β1/Smad pathway. Impact statement COPD has become a severe public health issue in the world and smoking has become a major cause of COPD. As a result, it is a demandingly needed to explore new potential therapy for cigarette smoke-associated COPD. The present study suggested that H2S treatment improved pulmonary function and reduced histopathological changes, lung edema, permeability, inflammation, airway remodeling and oxidative injury in a COPD model induced by cigarette smoke. Although additional studies are required to elucidate the pharmacodynamics, pharmacokinetics, and pharmacology of H2S in the cigarette smoke-associated COPD, our findings provide an experimental basis for the potential clinical application of H2S in COPD treatment.


Sign in / Sign up

Export Citation Format

Share Document