A steady-state equilibrium configuration in the dynamic analysis of a curved pipe conveying fluid

2006 ◽  
Vol 294 (1-2) ◽  
pp. 410-417 ◽  
Author(s):  
Duhan Jung ◽  
Jintai Chung
2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Zhao Yuzhen ◽  
Liu Yongshou ◽  
Guo Qing ◽  
Li Baohui

Based on the Flügge curved beam theory and total inextensible assumption, the dynamic equations of curved pipe’s in-plane vibration are established using the Newton method. The wave propagation method is proposed for calculating the natural frequency of curved pipes with clamped-clamped supported at both ends. Then, the performance function of the resonance reliability of curved pipe conveying fluid is established. Main and total effect indices of global sensitivity analysis (GSA) are introduced. The truncated importance sampling (TIS) method is used for calculating these indices. In the example, the natural frequency and critical velocity of a semicircular pipe are calculated. The importance ranking of input variables is obtained at different working conditions. The method proposed in this paper is valuable and leads to reliability estimation and antiresonance design of curved pipe conveying fluid.


2021 ◽  
Author(s):  
Eisuke Higuchi ◽  
Hiroshi Yabuno ◽  
Kiyotaka Yamashita

Abstract The dynamics of a flexible cantilevered pipe conveying fluid have been researched for several decades. It is known that the flexible pipe undergoes self-excited vibration when the flow speed exceeds a critical speed. This instability phenomenon is caused by nonconservative forces. From a mathematical point of view, the system has a characteristic of non-selfadjointness and the linear eigenmodes can be complex and non-orthogonal to each other. As a result, such a mathematical feature of the system is directly related to the instability phenomenon. In this study, we propose a method of experimentally identifying the complex mode from experimentally obtained time histories and decomposing the linear mode into real and imaginary components. In nonlinear analysis, we show that the nonlinear effects of practical systems on the mode in the steady-state selfexcited oscillation are small. The real and imaginary components identified using the proposed method for experimental steady-state self-excited oscillations are compared with those obtained in the theoretical analysis, thus validating the proposed identification method.


Sign in / Sign up

Export Citation Format

Share Document