Dynamics of a strongly nonlinear vibration absorber coupled to a harmonically excited two-degree-of-freedom system

2008 ◽  
Vol 312 (1-2) ◽  
pp. 234-256 ◽  
Author(s):  
Y. Starosvetsky ◽  
O.V. Gendelman
Author(s):  
Arnaldo Casalotti ◽  
Walter Lacarbonara

The one-to-one internal resonance occurring in a two-degree-of-freedom (2DOF) system composed by a damped non-linear primary structure coupled with a nonlinear vibration absorber is studied via the method of multiple scales up to higher order (i.e., the first nonlinear order beyond the internal/external resonances). The periodic response predicted by the asymptotic approach is in good agreement with the numerical results obtained via continuation of the periodic solution of the equations of motion. The asymptotic procedure lends itself to manageable sensitivity analyses and thus to versatile optimization by which different optimal tuning criteria for the vibration absorber can possibly be found in semi-closed form.


2017 ◽  
Vol 37 (3) ◽  
pp. 554-564
Author(s):  
Canchang Liu ◽  
Chicheng Ma ◽  
Jilei Zhou ◽  
Lu Liu ◽  
Shuchang Yue ◽  
...  

A two-degree-of-freedom nonlinear vibration system of a quarter vehicle suspension system is studied by using the feedback control method considered the fractional-order derivative damping. The nonlinear dynamic model of two-degree-of-freedom vehicle suspension system is built and linear velocity and displacement controllers are used to control the nonlinear vibration of the vehicle suspension system. A case of the 1:1 internal resonance is considered. The amplitude–frequency response is obtained with the multiscale method. The asymptotic stability conditions of the nonlinear system can be gotten by using the Routh–Hurwitz criterion and the ranges of control parameters are gained in the condition of stable solutions to the system. The simulation results show that the feedback control can effectively reduce the amplitude of primary resonance, weaken or even eliminate the nonlinear vibration characteristics of the suspension system. Fractional orders have an impact on control performance, which should be considered in the control problem. The study will provide a theoretical basis and reference for the optimal design of the vehicle suspension system.


1957 ◽  
Vol 24 (3) ◽  
pp. 435-439
Author(s):  
S. Mahalingam

Abstract A one-term approximate solution is given for the amplitudes of steady forced vibration of a single-degree-of-freedom system with a nonlinear (nonsymmetrical) spring characteristic. The method is similar to that of Martienssen (1), but the construction uses a modified curve (or “frequency function”) in place of the actual spring characteristic, the curve being so chosen that it gives the correct frequency for free vibrations. The method is extended to deal with a nonlinear vibration absorber fitted to a linear system.


2020 ◽  
Vol 102 (3) ◽  
pp. 1239-1270
Author(s):  
Alex Elías-Zúñiga ◽  
Luis Manuel Palacios-Pineda ◽  
Daniel Olvera-Trejo ◽  
Oscar Martínez-Romero

2012 ◽  
Vol 22 (05) ◽  
pp. 1250110 ◽  
Author(s):  
GUILIN WEN ◽  
HUIDONG XU ◽  
LU XIAO ◽  
XIAOPING XIE ◽  
ZHONG CHEN ◽  
...  

Vibro-impact systems with intermittent contacts are strongly nonlinear. The discontinuity of impact can give rise to rich nonlinear dynamic behaviors and bring forth challenges in the modeling and analysis of this type of nonsmooth systems. The dynamical behavior of a two-degree-of-freedom vibro-impact system is investigated experimentally in this paper. The experimental apparatus is composed of two spring-linked oscillators moving on a lead rail. One of the two oscillators connected to an excitation system intermittently impacts with a spherical obstacle fixed on the thick steel wall. With different gap sizes between the impacting oscillator and the obstacle, the dynamical behaviors are investigated by changing the excitation frequencies. The experimental results show periodic, grazing and chaotic dynamical behaviors of the vibro-impact system.


2019 ◽  
Vol 32 (3) ◽  
pp. 298-309 ◽  
Author(s):  
Ye-Wei Zhang ◽  
Shi-Lei Wang ◽  
Zhi-Yu Ni ◽  
Zhi-Wei Fang ◽  
Jian Zang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document