Vibration absorption in systems with a nonlinear energy sink: Nonlinear damping

2009 ◽  
Vol 324 (3-5) ◽  
pp. 916-939 ◽  
Author(s):  
Y. Starosvetsky ◽  
O.V. Gendelman
2011 ◽  
Vol 42 (10) ◽  
pp. 62-67
Author(s):  
Song Li ◽  
Bo Fang ◽  
Tianzhi Yang ◽  
Wenhu Huang

The phenomenon of energy pumping, in which vibratory energy is transferred irreversibly within a nonlinear, multi-degree-of-freedom system with the goal of reducing the transient response of the primary substructure, has recently been investigated analytically and through numerical simulations. The dynamics of single degree of freedom linear subsystem with attached nonlinear energy sink is investigated. The response of a linear oscillator attached to nonlinear energy sink with relatively small mass under external forcing in a vicinity of main resonance is studied analytically and numerically. It is possible that targeted energy could transfer from linear oscillators to the nonlinear energy sink in this system. Analytical model is verified numerically and a fairly good correspondence is observed. Fractional calculus offers a powerful tool to describe the dynamic behavior of real vibration absorption. A version of the fractional derivative models is presented and investigated in this paper for analyzing vibration absorption behavior of nonlinear energy sink. It is shown that the fractional-order system is in a stronger position than the traditional nonlinear energy sink coupled to the linear oscillator.


2021 ◽  
Author(s):  
Yunfa Zhang ◽  
Xianren Kong ◽  
Chengfei Yue ◽  
Huai Xiong

Abstract Nonlinear energy sink (NES) refers to a typical passive vibration device connected to linear or weakly nonlinear structures for vibration absorption and mitigation. This study investigates the dynamics of 1-dof and 2-dof NES with nonlinear damping and combined stiffness connected to a linear oscillator. For the system of 1-dof NES, a truncation damping and failure frequency are revealed through bifurcation analysis using the complex variable averaging method. The frequency detuning interval for the existence of the strongly modulated response (SMR) is also reported . For the system of 2-dof NES, it is reported in a similar bifurcation analysis that the mass distribution between NES affects the maximum value of saddle-node bifurcation. To obtain the periodic solution of the 2-dof NES system with the consideration of frequency detuning, the incremental harmonic balance method (IHB) and Floquet theory are employed. The corresponding response regime is obtained by Poincare mapping, it shows that the responses of the linear oscillator and 2-dof NES are not always consistent, and 2-dof NES can generate extra SMR than 1-dof NES. Finally, the vibration suppression effect of the proposed NES with nonlinear damping and combined stiffness is analyzed and verified by the energy spectrum, and it also shows that the 2-dof NES system demonstrates better performance.


Author(s):  
J. E. Chen ◽  
W. Zhang ◽  
M. H. Yao ◽  
J. Liu ◽  
M. Sun

AbstractIn this study, we investigate the targeted energy transfer (TET) from a simply supported beam that is subjected to thermal variations and external excitations to a local nonlinear energy sink (NES). We derive the governing equation of motion for the beam with an NES device and study the influences of NES parameters on the vibration-suppressing effect. We obtain the optimized parameters of the NES under constant-amplitude harmonic excitation at room temperature. The optimized NES gradually loses its vibration absorption efficiency as the excitation amplitude and temperature increase. We change the nonlinear stiffness of the NES to mitigate the influence of temperature variation and show that NES efficiency can be enhanced by reducing the nonlinear stiffness. We propose a variable-stiffness NES, and the results demonstrate this NES is best for maintaining efficiency over the whole temperature range. We also analyze the transient responses of the system under impulse loads. Results indicate that, like the performance of the system subjected to harmonic excitation, an NES with relatively low stiffness can better suppress vibration with increasing impulse amplitude and temperature.


2021 ◽  
Vol 42 (8) ◽  
pp. 1135-1154
Author(s):  
Jian’en Chen ◽  
Wei Zhang ◽  
Jun Liu ◽  
Wenhua Hu

AbstractNonlinear energy sink (NES) can passively absorb broadband energy from primary oscillators. Proper multiple NESs connected in parallel exhibit superior performance to single-degree-of-freedom (SDOF) NESs. In this work, a linear coupling spring is installed between two parallel NESs so as to expand the application scope of such vibration absorbers. The vibration absorption of the parallel and parallel-coupled NESs and the system response induced by the coupling spring are studied. The results show that the responses of the system exhibit a significant difference when the heavier cubic oscillators in the NESs have lower stiffness and the lighter cubic oscillators have higher stiffness. Moreover, the e±ciency of the parallel-coupled NES is higher for medium shocks but lower for small and large shocks than that of the parallel NESs. The parallel-coupled NES also shows superior performance for medium harmonic excitations until higher response branches are induced. The performance of the parallel-coupled NES and the SDOF NES is compared. It is found that, regardless of the chosen SDOF NES parameters, the performance of the parallel-coupled NES is similar or superior to that of the SDOF NES in the entire force range.


2016 ◽  
Vol 10 (3) ◽  
pp. 147 ◽  
Author(s):  
Rodrigo Tumolin Rocha ◽  
Jose Manoel Balthazar ◽  
Angelo Marcelo Tusset ◽  
Vinicius Piccirillo ◽  
Jorge Luis Palacios Felix

Sign in / Sign up

Export Citation Format

Share Document