scholarly journals Fully three-dimensional analysis of high-speed train–track–soil-structure dynamic interaction

2010 ◽  
Vol 329 (24) ◽  
pp. 5147-5163 ◽  
Author(s):  
P. Galvín ◽  
A. Romero ◽  
J. Domínguez
2019 ◽  
Vol 2019 ◽  
pp. 1-18 ◽  
Author(s):  
Chao Chang ◽  
Liang Ling ◽  
Zhaoling Han ◽  
Kaiyun Wang ◽  
Wanming Zhai

Wheel hollow wear is a common form of wheel-surface damage in high-speed trains, which is of great concern and a potential threat to the service performance and safety of the high-speed railway system. At the same time, rail corridors in high-speed railways are extensively straightened through the addition of bridges. However, only few studies paid attention to the influence of wheel-profile wear on the train-track-bridge dynamic interaction. This paper reports a study of the high-speed train-track-bridge dynamic interactions under new and hollow worn wheel profiles. A nonlinear rigid-flexible coupled model of a Chinese high-speed train travelling on nonballasted tracks supported by a long-span continuous girder bridge is formulated. This modelling is based on the train-track-bridge interaction theory, the wheel-rail nonelliptical multipoint contact theory, and the modified Craig–Bampton modal synthesis method. The effects of wheel-rail nonlinearity caused by the wheel hollow wear are fully considered. The proposed model is applied to predict the vertical and lateral dynamic responses of the high-speed train-track-bridge system under new and worn wheel profiles, in which a high-speed train passing through a long-span continuous girder bridge at a speed of 350 km/h is considered. The numerical results show that the wheel hollow wear changes the geometric parameters of the wheel-rail contact and then deteriorates the train-track-bridge interactions. The worn wheels can increase the vibration response of the high-speed railway bridges.


2017 ◽  
Vol 21 (6) ◽  
pp. 862-876 ◽  
Author(s):  
Tan Ngoc Than Cao ◽  
JN Reddy ◽  
Kok Keng Ang ◽  
Van Hai Luong ◽  
Minh Thi Tran ◽  
...  

2018 ◽  
Vol 115 ◽  
pp. 252-262 ◽  
Author(s):  
Lidong Wang ◽  
Zhihui Zhu ◽  
Yu Bai ◽  
Qi Li ◽  
Pedro Alves Costa ◽  
...  

2010 ◽  
Vol 29-32 ◽  
pp. 835-840 ◽  
Author(s):  
Zhi Peng Feng ◽  
Ji Ye Zhang ◽  
Wei Hua Zhang

As the speed of train increases, flow-induced vibration of trains passing through tunnels has become a subject of discussion, to investigate this phenomenon, a simplified geometric model and a vehicle dynamics model of a high-speed train traveling through a tunnel were built. To analyze the unsteady three-dimensional flow around the train, the 3-D, transient, viscous, compressible Reynolds-averaged Navier-Stokes equations combined with the k- two-equation turbulence model were solved with the finite volume method. The motion of the train was carried out using the technique of sliding grid method. The dynamics response of the train was obtained by means of the computational multi-body dynamics calculation. Meanwhile the running safety and riding comfort of the train were analyzed. With the numerical simulation, the variation of aerodynamic forces was obtained. The research founds that, vibration of the train increases drastically during it passing through a tunnel. The running safety and riding quality of the train are reduced greatly but they are in the safe range.


2017 ◽  
Vol 199 ◽  
pp. 2729-2734 ◽  
Author(s):  
M. Tanabe ◽  
K. Goto ◽  
T. Watanabe ◽  
M. Sogabe ◽  
H. Wakui ◽  
...  

2013 ◽  
Vol 300-301 ◽  
pp. 62-67
Author(s):  
Kun Ye ◽  
Ren Xian Li

Cutting is an effective device to reduce crosswind loads acting on trains. The cutting depth, width and gradient of slope are important factors for design and construction of cutting. Based on numerical analysis methods of three-dimensional viscous incompressible aerodynamics equations, aerodynamic side forces and yawing moments acting on the high-speed train, with different depths and widths of cutting,are calculated and analyzed under crosswinds,meanwhile the relationship of the gradient of cutting slope and transverse aerodynamic forces acting on trains are also studied. Simulation results show that aerodynamic side forces and yawing moments acting on the train(the first, middle and rear train)decrease with the increase of cutting depth. The relationship between transverse forces (moments) coefficients acting on the three sections and the cutting depth basically is the three cubed relation. The bigger is cutting width,the worse is running stability of train. The relationship between yawing moments coefficients acting each body of the train and the cutting width approximately is the three cubed relation. The transverse Aerodynamic forces decreased gradually with the increase of the gradient of cutting slope, the relationship between yawing moments coefficients acting each body of the train and the gradient of cutting slope basically is the four cubed relation.


2013 ◽  
Vol 1 (1-2) ◽  
pp. 3-24 ◽  
Author(s):  
Wanming Zhai ◽  
He Xia ◽  
Chengbiao Cai ◽  
Mangmang Gao ◽  
Xiaozhen Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document