scholarly journals On a comparative study of an accurate spatial discretization method for one-dimensional continuous systems

2017 ◽  
Vol 399 ◽  
pp. 257-284 ◽  
Author(s):  
K. Wu ◽  
W.D. Zhu ◽  
W. Fan
2017 ◽  
Vol 140 (1) ◽  
Author(s):  
K. Wu ◽  
W. D. Zhu

A new global spatial discretization method (NGSDM) is developed to accurately calculate natural frequencies and dynamic responses of two-dimensional (2D) continuous systems such as membranes and Kirchhoff plates. The transverse displacement of a 2D continuous system is separated into a 2D internal term and a 2D boundary-induced term; the latter is interpolated from one-dimensional (1D) boundary functions that are further divided into 1D internal terms and 1D boundary-induced terms. The 2D and 1D internal terms are chosen to satisfy prescribed boundary conditions, and the 2D and 1D boundary-induced terms use additional degrees-of-freedom (DOFs) at boundaries to ensure satisfaction of all the boundary conditions. A general formulation of the method that can achieve uniform convergence is established for a 2D continuous system with an arbitrary domain shape and arbitrary boundary conditions, and it is elaborated in detail for a general rectangular Kirchhoff plate. An example of a rectangular Kirchhoff plate that has three simply supported boundaries and one free boundary with an attached Euler–Bernoulli beam is investigated using the developed method and results are compared with those from other global and local spatial discretization methods. Advantages of the new method over local spatial discretization methods are much fewer DOFs and much less computational effort, and those over the assumed modes method (AMM) are better numerical property, a faster calculation speed, and much higher accuracy in calculation of bending moments and transverse shearing forces that are related to high-order spatial derivatives of the displacement of the plate with an edge beam.


Author(s):  
K. Wu ◽  
W. D. Zhu

A new global spatial discretization method is developed to accurately calculate natural frequencies and dynamic responses of two-dimensional continuous systems such as membranes and Kirchhoff plates. The transverse displacement of a two-dimensional continuous system is separated into a two-dimensional internal term and a two-dimensional boundary-induced term; the latter is interpolated from one-dimensional boundary functions that are further divided into one-dimensional internal terms and one-dimensional boundary-induced terms. The two- and one-dimensional internal terms are chosen to satisfy predetermined boundary conditions, and the two- and one-dimensional boundary-induced terms use additional degrees of freedom at boundaries to ensure satisfaction of all boundary conditions. A general formulation of the method that can achieve uniform convergence is established for a two-dimensional continuous system with an arbitrary domain shape and arbitrary boundary conditions, and it is elaborated in detail for a general rectangular Kirchhoff plate. An example of a rectangular Kirchhoff plate that has three simply-supported boundaries and one free boundary with an attached Euler-Bernoulli beam is investigated using the developed method and results are compared with those from other global and local spatial discretization methods. Natural frequencies and dynamic responses that include the displacement, the velocity, rotational angles, a bending moment, and a transverse shearing force are calculated using both the developed method and the assumed modes method, and compared with results from the finite element method and the finite difference method, respectively. Advantages of the new method over local spatial discretization methods are much fewer degrees of freedom and much less computational effort, and those over the assumed modes method are better numerical property, a faster calculation speed, and much higher accuracy in calculation of the bending moment and the transverse shearing force that are related to high-order spatial derivatives of the displacement of the plate with an edge beam.


1972 ◽  
Vol 94 (1) ◽  
pp. 1-7 ◽  
Author(s):  
O. B. Dale ◽  
R. Cohen

A method is presented for obtaining and optimizing the frequency response of one-dimensional damped linear continuous systems. The systems considered are assumed to contain unknown constant parameters in the boundary conditions and equations of motion which the designer can vary to obtain a minimum resonant response in some selected frequency interval. The unknown parameters need not be strictly dissipative nor unconstrained. No analytic solutions, either exact or approximate, are required for the system response and only initial value numerical integrations of the state and adjoint differential equations are required to obtain the optimal parameter set. The combinations of state variables comprising the response and the response locations are arbitrary.


Author(s):  
Mondher Yahiaoui

In this paper, we present a fourth-order accurate and a seventh-order accurate, one-step compact difference methods. These methods can be used to solve initial or boundaryvalue problems which can be modeled by a first-order linear system of differential equations. It is then shown in detail how these methods can be used to solve vibration problems of onedimensional continuous systems. Natural frequencies of a cantilever beam in transverse vibrations are computed and the results are compared to analytical ones to prove the high accuracy and efficiency of both methods. A comparison was also made to a finite element solution and the results have shown that both compact-difference methods yield more accurate values even with a reduced number of intervals.


Sign in / Sign up

Export Citation Format

Share Document