Multi-Parameter Optimization of Damped Linear Continuous Systems

1972 ◽  
Vol 94 (1) ◽  
pp. 1-7 ◽  
Author(s):  
O. B. Dale ◽  
R. Cohen

A method is presented for obtaining and optimizing the frequency response of one-dimensional damped linear continuous systems. The systems considered are assumed to contain unknown constant parameters in the boundary conditions and equations of motion which the designer can vary to obtain a minimum resonant response in some selected frequency interval. The unknown parameters need not be strictly dissipative nor unconstrained. No analytic solutions, either exact or approximate, are required for the system response and only initial value numerical integrations of the state and adjoint differential equations are required to obtain the optimal parameter set. The combinations of state variables comprising the response and the response locations are arbitrary.

2020 ◽  
Vol 25 (2) ◽  
pp. 29
Author(s):  
Desmond Adair ◽  
Aigul Nagimova ◽  
Martin Jaeger

The vibration characteristics of a nonuniform, flexible and free-flying slender rocket experiencing constant thrust is investigated. The rocket is idealized as a classic nonuniform beam with a constant one-dimensional follower force and with free-free boundary conditions. The equations of motion are derived by applying the extended Hamilton’s principle for non-conservative systems. Natural frequencies and associated mode shapes of the rocket are determined using the relatively efficient and accurate Adomian modified decomposition method (AMDM) with the solutions obtained by solving a set of algebraic equations with only three unknown parameters. The method can easily be extended to obtain approximate solutions to vibration problems for any type of nonuniform beam.


Author(s):  
Anindya Chatterjee ◽  
Joseph P. Cusumano

Abstract We present a new observer-based method for parameter estimation for nonlinear oscillatory mechanical systems where the unknown parameters appear linearly (they may each be multiplied by bounded and Lipschitz continuous but otherwise arbitrary, possibly nonlinear, functions of the oscillatory state variables and time). The oscillations in the system may be periodic, quasiperiodic or chaotic. The method is also applicable to systems where the parameters appear nonlinearly, provided a good initial estimate of the parameter is available. The observer requires measurements of displacements. It estimates velocities on a fast time scale, and the unknown parameters on a slow time scale. The fast and slow time scales are governed by a single small parameter ϵ. Using asymptotic methods including the method of averaging, it is shown that the observer’s estimates of the unknown parameters converge like e−ϵt where t is time, provided the system response is such that the coefficient-functions of the unknown parameters are not close to being linearly dependent. It is also shown that the method is robust in that small errors in the model cause small errors in the parameter estimates. A numerical example is provided to demonstrate the effectiveness of the method.


1971 ◽  
Vol 93 (1) ◽  
pp. 45-52 ◽  
Author(s):  
O. Bruce Dale ◽  
Raymond Cohen

A method is presented for identifying unknown parameters in linear continuous vibratory systems from frequency response data. The method is applicable to systems for which the steady-state equations of motion are reducible to a finite set of ordinary differential equations. After assuming a system model of partial differential equations and boundary conditions containing unknown parameters, initial value numerical integrations are performed to identify the unknown parameters. No analytic solution to the system model is required. For the identification of conservative or near conservative systems, only resonant frequency data are used and, for the identification of nonconservative systems, the data may consist of any state variable or combination of state variables at any arbitrary location within the system. The use of multiple response transducers is not required.


Author(s):  
E.R Johnson ◽  
G.G Vilenski

This paper describes steady two-dimensional disturbances forced on the interface of a two-layer fluid by flow over an isolated obstacle. The oncoming flow speed is close to the linear longwave speed and the layer densities, layer depths and obstacle height are chosen so that the equations of motion reduce to the forced two-dimensional Korteweg–de Vries equation with cubic nonlinearity, i.e. the forced extended Kadomtsev–Petviashvili equation. The distinctive feature noted here is the appearance in the far lee-wave wake behind obstacles in subcritical flow of a ‘table-top’ wave extending almost one-dimensionally for many obstacles widths across the flow. Numerical integrations show that the most important parameter determining whether this wave appears is the departure from criticality, with the wave appearing in slightly subcritical flows but being destroyed by two-dimensional effects behind even quite long ridges in even moderately subcritical flow. The wave appears after the flow has passed through a transition from subcritical to supercritical over the obstacle and its leading and trailing edges resemble dissipationless leaps standing in supercritical flow. Two-dimensional steady supercritical flows are related to one-dimensional unsteady flows with time in the unsteady flow associated with a slow cross-stream variable in the two-dimensional flows. Thus the wide cross-stream extent of the table-top wave appears to derive from the combination of its occurrence in a supercritical region embedded in the subcritical flow and the propagation without change of form of table-top waves in one-dimensional unsteady flow. The table-top wave here is associated with a resonant steepening of the transition above the obstacle and a consequent twelve-fold increase in drag. Remarkably, the table-top wave is generated equally strongly and extends laterally equally as far behind an axisymmetric obstacle as behind a ridge and so leads to subcritical flows differing significantly from linear predictions.


Author(s):  
Yu Liu ◽  
Feng Gao

The working state of the five hundred-meter aperture spherical telescope (FAST) is solved using the step-wise assignment method. In this paper, the mathematical model of the cable-net support structure of the FAST is set up by the catenary equation. There are a large number of nonlinear equations and unknown parameters of the model. The nonlinear equations are solved by using the step-wise assignment method. The method is using the analytical solutions of the cable-net equations of one working state as the initial value for the next working state, from which the analytical solutions of the nonlinear equations of the cable-net for each working state of the FAST and the tension and length of each driving cable can be obtained. The suggested algorithm is quite practically well suited to study the working state of the cable-net structures of the FAST. Also, the working state analysis result of the cable-net support structure of a reduced model of the cable-net structure reflector for the FAST is given to verify the reliability of the method. In order to show the validity of the method, comparisons with another algorithm to set the initial value are presented. This method has an important guiding significance to the further study on the control of the new type of flexible cable driving mechanism, especially the FAST.


Author(s):  
Simon A. Neild ◽  
Andrea Cammarano ◽  
David J. Wagg

In this paper we discuss a theoretical technique for decomposing multi-degree-of-freedom weakly nonlinear systems into a simpler form — an approach which has parallels with the well know method for linear modal analysis. The key outcome is that the system resonances, both linear and nonlinear are revealed by the transformation process. For each resonance, parameters can be obtained which characterise the backbone curves, and higher harmonic components of the response. The underlying mathematical technique is based on a near identity normal form transformation. This is an established technique for analysing weakly nonlinear vibrating systems, but in this approach we use a variation of the method for systems of equations written in second-order form. This is a much more natural approach for structural dynamics where the governing equations of motion are written in this form as standard practice. In fact the first step in the method is to carry out a linear modal transformation using linear modes as would typically done for a linear system. The near identity transform is then applied as a second step in the process and one which identifies the nonlinear resonances in the system being considered. For an example system with cubic nonlinearities, we show how the resulting transformed equations can be used to obtain a time independent representation of the system response. We will discuss how the analysis can be carried out with applied forcing, and how the approximations about response frequencies, made during the near-identity transformation, affect the accuracy of the technique. In fact we show that the second-order normal form approach can actually improve the predictions of sub- and super-harmonic responses. Finally we comment on how this theoretical technique could be used as part of a modal testing approach in future work.


Geophysics ◽  
1988 ◽  
Vol 53 (7) ◽  
pp. 894-902 ◽  
Author(s):  
Ruhi Saatçilar ◽  
Nezihi Canitez

Amplitude‐ and frequency‐modulated wave motion constitute the ground‐roll noise in seismic reflection prospecting. Hence, it is possible to eliminate ground roll by applying one‐dimensional, linear frequency‐modulated matched filters. These filters effectively attenuate the ground‐roll energy without damaging the signal wavelet inside or outside the ground roll’s frequency interval. When the frequency bands of seismic reflections and ground roll overlap, the new filters eliminate the ground roll more effectively than conventional frequency and multichannel filters without affecting the vertical resolution of the seismic data.


Sign in / Sign up

Export Citation Format

Share Document