Finite amplitude modal interactions in a weakly nonlinear structural-acoustic cylindrical waveguide

2021 ◽  
Vol 494 ◽  
pp. 115857
Author(s):  
Biswajit Bharat ◽  
Venkata R. Sonti
1999 ◽  
Vol 396 ◽  
pp. 73-108 ◽  
Author(s):  
D. M. MASON ◽  
R. R. KERSWELL

A direct numerical simulation is presented of an elliptical instability observed in the laboratory within an elliptically distorted, rapidly rotating, fluid-filled cylinder (Malkus 1989). Generically, the instability manifests itself as the pairwise resonance of two different inertial modes with the underlying elliptical flow. We study in detail the simplest ‘subharmonic’ form of the instability where the waves are a complex conjugate pair and which at weakly supercritical elliptical distortion should ultimately saturate at some finite amplitude (Waleffe 1989; Kerswell 1992). Such states have yet to be experimentally identified since the flow invariably breaks down to small-scale disorder. Evidence is presented here to support the argument that such weakly nonlinear states are never seen because they are either unstable to secondary instabilities at observable amplitudes or neighbouring competitor elliptical instabilities grow to ultimately disrupt them. The former scenario confirms earlier work (Kerswell 1999) which highlights the generic instability of inertial waves even at very small amplitudes. The latter represents a first numerical demonstration of two competing elliptical instabilities co-existing in a bounded system.


1979 ◽  
Vol 90 (1) ◽  
pp. 161-178 ◽  
Author(s):  
R. H. J. Grimshaw

A Helmholtz velocity profile with velocity discontinuity 2U is embedded in an infinite continuously stratified Boussinesq fluid with constant Brunt—Väisälä frequency N. Linear theory shows that this system can support resonant over-reflexion, i.e. the existence of neutral modes consisting of outgoing internal gravity waves, whenever the horizontal wavenumber is less than N/2½U. This paper examines the weakly nonlinear theory of these modes. An equation governing the evolution of the amplitude of the interface displacement is derived. The time scale for this evolution is α−2, where α is a measure of the magnitude of the interface displacement, which is excited by an incident wave of magnitude O(α3). It is shown that the mode which is symmetrical with respect to the interface (and has a horizontal phase speed equal to the mean of the basic velocity discontinuity) remains neutral, with a finite amplitude wave on the interface. However, the other modes, which are not symmetrical with respect to the interface, become unstable owing to the self-interaction of the primary mode with its second harmonic. The interface displacement develops a singularity in a finite time.


2001 ◽  
Vol 429 ◽  
pp. 343-380 ◽  
Author(s):  
BRUCE R. SUTHERLAND

The evolution and stability of two-dimensional, large-amplitude, non-hydrostatic internal wavepackets are examined analytically and by numerical simulations. The weakly nonlinear dispersion relation for horizontally periodic, vertically compact internal waves is derived and the results are applied to assess the stability of weakly nonlinear wavepackets to vertical modulations. In terms of Θ, the angle that lines of constant phase make with the vertical, the wavepackets are predicted to be unstable if [mid ]Θ[mid ] < Θc, where Θc = cos−1 (2/3)1/2 ≃ 35.3° is the angle corresponding to internal waves with the fastest vertical group velocity. Fully nonlinear numerical simulations of finite-amplitude wavepackets confirm this prediction: the amplitude of wavepackets with [mid ]Θ[mid ] > Θc decreases over time; the amplitude of wavepackets with [mid ]Θ[mid ] < Θc increases initially, but then decreases as the wavepacket subdivides into a wave train, following the well-known Fermi–Pasta–Ulam recurrence phenomenon.If the initial wavepacket is of sufficiently large amplitude, it becomes unstable in the sense that eventually it convectively overturns. Two new analytic conditions for the stability of quasi-plane large-amplitude internal waves are proposed. These are qualitatively and quantitatively different from the parametric instability of plane periodic internal waves. The ‘breaking condition’ requires not only that the wave is statically unstable but that the convective instability growth rate is greater than the frequency of the waves. The critical amplitude for breaking to occur is found to be ACV = cot Θ (1 + cos2 Θ)/2π, where ACV is the ratio of the maximum vertical displacement of the wave to its horizontal wavelength. A second instability condition proposes that a statically stable wavepacket may evolve so that it becomes convectively unstable due to resonant interactions between the waves and the wave-induced mean flow. This hypothesis is based on the assumption that the resonant long wave–short wave interaction, which Grimshaw (1977) has shown amplifies the waves linearly in time, continues to amplify the waves in the fully nonlinear regime. Using linear theory estimates, the critical amplitude for instability is ASA = sin 2Θ/(8π2)1/2. The results of numerical simulations of horizontally periodic, vertically compact wavepackets show excellent agreement with this latter stability condition. However, for wavepackets with horizontal extent comparable with the horizontal wavelength, the wavepacket is found to be stable at larger amplitudes than predicted if Θ [lsim ] 45°. It is proposed that these results may explain why internal waves generated by turbulence in laboratory experiments are often observed to be excited within a narrow frequency band corresponding to Θ less than approximately 45°.


2019 ◽  
Vol 76 (12) ◽  
pp. 3831-3846 ◽  
Author(s):  
Carlos F. M. Raupp ◽  
André S. W. Teruya ◽  
Pedro L. Silva Dias

Abstract Here the theory of global nonhydrostatic normal modes has been further developed with the analysis of both linear and weakly nonlinear energetics of inertia–acoustic (IA) and inertia–gravity (IG) modes. These energetics are analyzed in the context of a shallow global nonhydrostatic model governing finite-amplitude perturbations around a resting, hydrostatic, and isothermal background state. For the linear case, the energy as a function of the zonal wavenumber of the IA and IG modes is analyzed, and the nonhydrostatic effect of vertical acceleration on the IG waves is highlighted. For the nonlinear energetics analysis, the reduced equations of a single resonant wave triad interaction are obtained by using a pseudoenergy orthogonality relation. Integration of the triad equations for a resonance involving a short harmonic of an IG wave, a planetary-scale IA mode, and a short IA wave mode shows that an IG mode can allow two IA modes to exchange energy in specific resonant triads. These wave interactions can yield significant modulations in the dynamical fields associated with the physical-space solution with periods varying from a daily time scale to almost a month long.


2020 ◽  
Vol 12 (5) ◽  
pp. 622-631
Author(s):  
Palle Kiran ◽  
S. H. Manjula

The effect of solutal modulation on a rotating porous media is studied. Using solvability condition, the finite amplitude equation is derived at third order of the system. A weakly nonlinear analysis is applied to investigate mass transfer in a porous medium. In this article, the stationary convection is discussed in the presence of solutal Rayleigh number. The amplitude equation (GLE) is solved numerically. Using this GLE the Sherwood number is evaluated in terms of the various system parameters. The effect of individual parameters on mass transport is discussed in detail. It is found that the mass transfer is more for modulated system than un-modulated case. Further, internal solute number Si enhance or diminishes the mass transfer. Finally it is also found that, solutal modulation can be effectively applied in either enhancing or diminishing the mass transfer.


1986 ◽  
Vol 163 ◽  
pp. 257-282 ◽  
Author(s):  
Philip Hall ◽  
Mujeeb R. Malik

The instability of a three-dimensional attachment-line boundary layer is considered in the nonlinear regime. Using weakly nonlinear theory, it is found that, apart from a small interval near the (linear) critical Reynolds number, finite-amplitude solutions bifurcate subcritically from the upper branch of the neutral curve. The time-dependent Navier–Stokes equations for the attachment-line flow have been solved using a Fourier–Chebyshev spectral method and the subcritical instability is found at wavenumbers that correspond to the upper branch. Both the theory and the numerical calculations show the existence of supercritical finite-amplitude (equilibrium) states near the lower branch which explains why the observed flow exhibits a preference for the lower branch modes. The effect of blowing and suction on nonlinear stability of the attachment-line boundary layer is also investigated.


1988 ◽  
Vol 39 (2) ◽  
pp. 183-191 ◽  
Author(s):  
G. P. Zank ◽  
J. F. McKenzie

It is shown that the conservation law for total momentum of an ion-beam plasma system can be cast in the form of a classical energy integral of a particle in a potential well. By using boundary conditions appropriate to a solitary pulse, we derive conditions for the existence of finite-amplitude solitons propagating in the system. Under suitable conditions, as many as three forward-propagating solitary waves can exist. It is interesting to note that the criterion for their existence is intimately related to the absence of convective instabilities in an ion-beam plasma. Exact ‘sech2’ type solutions are available in the weakly nonlinear regime. Solitary-wave profiles for the general case are obtained numerically.


2000 ◽  
Vol 403 ◽  
pp. 133-151 ◽  
Author(s):  
J. E. HART

Centrifugal buoyancy forces in a container rotating about an axis aligned with gravity lead to mean flows that interact with rotating convection. A model of the interactions between these flows and the thermal instabilities that occur in weakly nonlinear rapidly rotating convection is used to estimate when, in terms of external parameters, centrifugal buoyancy has a substantial influence on thermal convective instability. The significant physical effects include the direct action of centrifugal buoyancy on the eddies themselves, the upwards advection of basic-state vertical shear by the perturbation rolls, and the alteration of the mean thermal stratification upon which eddies grow by the basic centrifugally induced circulation. It is shown that the first effect is the most important for common laboratory settings, and can lead to destabilization of the system at outer radii. Other manifestations of centrifugal buoyancy include the generation of a positive offset of the mean temperature at the centre of the cell, and a reduction of this offset by heat fluxes arising from the centrifugally modified finite-amplitude convective eddies.


2006 ◽  
Vol 36 (1) ◽  
pp. 122-139 ◽  
Author(s):  
Seung-Ji Ha ◽  
Gordon E. Swaters

Abstract The weakly nonlinear baroclinic instability characteristics of time-varying grounded abyssal flow on sloping topography with dissipation are described. Specifically, the finite-amplitude evolution of marginally unstable or stable abyssal flow both at and removed from the point of marginal stability (i.e., the minimum shear required for instability) is determined. The equations governing the evolution of time-varying dissipative abyssal flow not at the point of marginal stability are identical to those previously obtained for the Phillips model for zonal flow on a β plane. The stability problem at the point of marginally stability is fully nonlinear at leading order. A wave packet model is introduced to examine the role of dissipation and time variability in the background abyssal current. This model is a generalization of one introduced for the baroclinic instability of zonal flow on a β plane. A spectral decomposition and truncation leads, in the absence of time variability in the background flow and dissipation, to the sine–Gordon solitary wave equation that has grounded abyssal soliton solutions. The modulation characteristics of the soliton are determined when the underlying abyssal current is marginally stable or unstable and possesses time variability and/or dissipation. The theory is illustrated with examples.


1994 ◽  
Vol 266 ◽  
pp. 243-276 ◽  
Author(s):  
S. E. Harris ◽  
D. G. Crighton

In this paper, we consider the evolution of an initially small voidage disturbance in a gas-fluidized bed. Using a one-dimensional model proposed by Needham & Merkin (1983), Crighton (1991) has shown that weakly nonlinear waves of voidage propagate according to the Korteweg–de Vries equation with perturbation terms which can be either amplifying or dissipative, depending on the sign of a coefficient. Here, we investigate the unstable side of the threshold and examine the growth of a single KdV voidage soliton, following its development through several different regimes. As the size of the soliton increases, KdV remains the leading-order equation for some time, but the perturbation terms change, thereby altering the dependence of the amplitude on time. Eventually the disturbance attains a finite amplitude and corresponds to a fully nonlinear solitary wave solution. This matches back directly onto the KdV soliton and tends exponentially to a limiting size. We interpret the series of large-amplitude localized pulses of voidage formed in this way from initial disturbances as corresponding to the ‘voidage slugs’ observed in gas fluidization in narrow tubes.


Sign in / Sign up

Export Citation Format

Share Document