Dynamics of a rotor shaft driven by a non-ideal source through a universal joint

2021 ◽  
Vol 499 ◽  
pp. 115992
Author(s):  
Saurabh Kumar Bharti ◽  
Anubhab Sinha ◽  
Arun Kumar Samantaray ◽  
Ranjan Bhattacharyya
Keyword(s):  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Markus Greinwald ◽  
Emily K. Bliven ◽  
Alex Trompeter ◽  
Peter Augat

Abstract Hexapod-ring-fixators have a characteristic rattling sound during load changes due to play in the hexapod struts. This play is perceived as unpleasant by patients and can lead to frame instability. Using slotted-ball-instead of universal-joints for the ring-strut connection could potentially resolve this problem. The purpose of the study was to clarify if the use of slotted-ball-joints reduces play and also fracture gap movement. A hexapod-fixator with slotted-ball-joints and aluminum struts (Ball-Al) was compared to universal-joint-fixators with either aluminum (Uni Al) or steel struts (Uni Steel). Six fixator frames each were loaded in tension, compression, torsion, bending and shear and mechanical performance was analyzed in terms of movement, stiffness and play. The slotted-ball-joint fixator was the only system without measurable axial play (<0.01 mm) compared to Uni-Al (1.2 ± 0.1) mm and Uni-Steel (0.6 ± 0.2) mm (p≤0.001). In both shear directions the Uni-Al had the largest play (p≤0.014). The resulting axial fracture gap movements were similar for the two aluminum frames and up to 25% smaller for the steel frame, mainly due to the highest stiffness found for the Uni-Steel in all loading scenarios (p≤0.036). However, the Uni-Steel construct was also up to 29% (450 g) heavier and had fewer usable mounting holes. In conclusion, the slotted-ball-joints of the Ball-Al fixator reduced play and minimized shear movement in the fracture while maintaining low weight of the construct. The heavier and stiffer Uni-Steel fixator compensates for existing play with a higher overall stiffness.


2021 ◽  
Vol 687 (1) ◽  
pp. 012117
Author(s):  
Ma Jun ◽  
Shi Yonggang ◽  
Dong Gang ◽  
Gong Fuxing ◽  
Wang Zhu ◽  
...  

1981 ◽  
Vol 24 (11) ◽  
pp. 954-957
Author(s):  
B. N. Ivanov
Keyword(s):  

Author(s):  
Christoph Heinz ◽  
Markus Schatz ◽  
Michael V. Casey ◽  
Heinrich Stu¨er

To guarantee a faultless operation of a turbine it is necessary to know the dynamic performance of the machine especially during start-up and shut-down. In this paper the vibration behaviour of a low pressure model steam turbine which has been intentionally mistuned is investigated at the resonance point of an eigenfrequency crossing an engine order. Strain gauge measurements as well as tip timing analysis have been used, whereby a very good agreement is found between the methods. To enhance the interpretation of the data measured, an analytical mass-spring-model, which incorporates degrees of freedom for the blades as well as for the rotor shaft, is presented. The vibration amplitude varies strongly from blade to blade. This is caused by the mistuning parameters and the coupling through the rotor shaft. This circumferential blade amplitude distribution is investigated at different operating conditions. The results show an increasing aerodynamic coupling with increasing fluid density, which becomes visible in a changing circumferential blade amplitude distribution. Furthermore the blade amplitudes rise non-linearly with increasing flow velocity, while the amplitude distribution is almost independent. Additionally, the mechanical and aerodynamic damping parameters are calculated by means of a non-linear regression method. Based on measurements at different density conditions, it is possible to extrapolate the damping parameters down to vacuum conditions, where aerodynamic damping is absent. Hence the material damping parameter can be determined.


2014 ◽  
Vol 53 (6) ◽  
pp. 1892-1900 ◽  
Author(s):  
Yuan-jin Yu ◽  
Jian-cheng Fang ◽  
Biao Xiang ◽  
Chun-e Wang
Keyword(s):  

Author(s):  
J. L. Cagney ◽  
S. S. Rao

Abstract The modeling of manufacturing errors in mechanisms is a significant task to validate practical designs. The use of probability distributions for errors can simulate manufacturing variations and real world operations. This paper presents the mechanical error analysis of universal joint drivelines. Each error is simulated using a probability distribution, i.e., a design of the mechanism is created by assigning random values to the errors. Each design is then evaluated by comparing the output error with a limiting value and the reliability of the universal joint is estimated. For this, the design is considered a failure whenever the output error exceeds the specified limit. In addition, the problem of synthesis, which involves the allocation of tolerances (errors) for minimum manufacturing cost without violating a specified accuracy requirement of the output, is also considered. Three probability distributions — normal, Weibull and beta distributions — were used to simulate the random values of the errors. The similarity of the results given by the three distributions suggests that the use of normal distribution would be acceptable for modeling the tolerances in most cases.


Sign in / Sign up

Export Citation Format

Share Document