Dynamic stability of centrifugal pendulum vibration absorbers allowing a rotational mobility

2021 ◽  
pp. 116525
Author(s):  
V. Mahe ◽  
A. Renault ◽  
A. Grolet ◽  
O. Thomas ◽  
H. Mahe
Author(s):  
Yenkai Wang ◽  
Steven W. Shaw ◽  
Chang-Po Chao

Abstract This paper considers the placement, sizing and tuning of centrifugal pendulum vibration absorbers for the reduction of transverse vibrations in rotating beams. A simplified model describing the linearized dynamics of a rotating beam with external excitation and attached absorbers is used for the analysis. A design strategy is offered wherein individual absorbers are designed to reduce vibration amplitudes and stress levels caused by troublesome resonances. It is shown that this procedure offers significant reduction in vibratory stresses, even in the case of excitations composed of multiple harmonics.


Author(s):  
Yukio Ishida ◽  
Tsuyoshi Inoue ◽  
Taishi Kagawa ◽  
Motohiko Ueda

Driving torque of rotating machinery, such as automobile engines, changes periodically. As a result, torsional vibrations occur and cause serious noise and vibration problems. In this study, the dynamic characteristics of centrifugal pendulum vibration absorbers restraining torsional vibration is investigated both theoretically and experimentally. In the theoretical analysis, the nonlinear characteristics are taken into consideration under the assumption of large amplitude vibration of pendulum. It is clarified that the centrifugal pendulum, although it has remarkable effects on suppressing harmonic vibration, induces large amplitude harmonic vibrations, the second and third superharmonic resonances, and unstable vibrations of harmonic type. We propose various methods to suppress these secondarily induced vibration and show that it is possible to suppress torsional vibrations to substancially zero amplitude in all through the rotational speed range.


1964 ◽  
Vol 86 (3) ◽  
pp. 257-263 ◽  
Author(s):  
D. E. Newland

Centrifugal pendulums have been used for many years to limit the torsional vibration of reciprocating engines. Recently small pendulums, designed to swing through amplitudes of about 45 deg, have been tested for lightweight aircraft engines. These have not functioned properly, and have been found to swing through much larger angles than expected, damaging the stops limiting motion of the pendulum counterweight. This paper investigates the large-amplitude motion of centrifugal-pendulum vibration absorbers.


Author(s):  
Chengzhi Shi ◽  
Robert G. Parker ◽  
Steven W. Shaw

This note provides an analytical proof of the optimal tuning of centrifugal pendulum vibration absorbers (CPVAs) to reduce in-plane translational and rotational vibration for a rotor with N cyclically symmetric substructures attached to it. The reaction forces that the substructures (helicopter or wind turbine blades, for example) exert on the rotor are first analyzed. The linearized equations of motion for the vibration are then solved by a gyroscopic system modal analysis procedure. The solutions show that the rotor translational vibration at order j is reduced when one group of CPVAs is tuned to order jN − 1 and the other is tuned to order jN + 1. Derivation of this result is not available in the literature. The current derivation also yields the better known result that tuning CPVAs to order jN reduces rotational rotor vibration at order j.


2020 ◽  
Vol 25 (2) ◽  
pp. 266-277
Author(s):  
David E. Newland

For over 60 years, the torsional vibration of reciprocating aircraft engines has been controlled by centrifugal pendulum vibration absorbers. Loose weights attached to an engine's crankshaft act as tuned-mass absorbers by oscillating at a frequency in proportion to rotational speed. More recently, similar loose masses have been attached to the flywheels of automobile engines. The need to achieve increased power from fewer cylinders, while reducing weight and improving economy, has exacerbated torsional vibration of the drive train. The dynamics of a wheel carrying many centrifugal pendulums of bifilar design has been the subject of a growing literature, but much less has been written about roller-type pendulums and about overall system performance. This paper is a new analysis of bifilar and roller systems and their design requirements. The current state of knowledge about practical design limitations is explained and the need for further research discussed.


Author(s):  
Bahadir Sarikaya ◽  
Murat Inalpolat ◽  
Hyun Ku Lee ◽  
Moo Suk Kim

Abstract A generalized nonlinear time-varying, planar dynamic model of bifilar centrifugal pendulum vibration absorbers (CPVA) is proposed. This dynamic model enables fast prediction of vibration reduction performance of any CPVA design considering the impact of absorber rollers, gravity, end stops and translational motion of the system. The modeling framework provides comparative, simultaneous simulation results for numerous different design possibilities, and thus can be used to optimize CPVA designs. The dynamic model is generic and can handle N individually designed absorbers on a rotor with numerous path options ranging from circular to cycloid. Absorbers can be designed to be equally or unequally spaced. In this study, first the dynamic model of the bifilar CPVAs is derived. Then, case studies are provided to showcase the capabilities of the modeling framework. Initially, maximum applicable dynamic torque to a CPVA and vibration reduction performance are investigated by considering the effect of tuning order and different absorber path options for different operating speeds. Then, impact of different modelling features on system frequency response and limit dynamic torque is investigated. Interactions between the important design parameters are highlighted. Finally, the influence of end stop positioning on the CPVA dynamic response is illustrated.


Author(s):  
Chang-Po Chao ◽  
Steven W. Shaw

Abstract The system considered consists of a rigid rotor and N centrifugal pendulum vibration absorbers (CPVAs) riding on epicycloidal paths tuned to order n, the same as the dominant order of the applied torque. An investigation is carried out to determine the effects that a dynamic instability of the synchronous motion of CPVAs has on the system performance. Using various co-ordinate transformations, including a group-theory-based transformation and an angular transformation, the system dynamics are modeled by a set of 2N first-order, averaged, autonomous differential equations. A bifurcation analysis of these equations shows that in the post-bifurcation dynamic, one of the N absorbers moves out of step and at a much larger amplitude than its partners. This localized response is dynamically stable and leads to the worst-case (that is, the smallest) operating torque range of all the possible post-critical steady-state solutions. Analytical estimates of the torque range and the rotor acceleration are derived based on a truncated version of the equations, and more accurate estimates are obtained from a numerical solution of the non-truncated equations. The results are found to be very accurate when compared to numerical simulations.


2021 ◽  
pp. 1-61
Author(s):  
Darryl Tchokogoue ◽  
Ming Mu ◽  
Brian F. Feeny ◽  
Bruce K. Geist ◽  
Steven W. Shaw

Abstract This paper describes the effects of gravity on the response of systems of identical, cyclically arranged, centrifugal pendulum vibration absorbers (CPVAs). CPVAs are passive devices composed of movable masses suspended on a rotor, suspended such that they reduce torsional vibrations at a given engine order. These absorbers are becoming prevalent in automotive powertrain components in order to expand fuel-efficient engine operating conditions. Gravitational effects acting on the absorbers can be important for a horizontal rotor/CPVA system spinning at relatively low rotation speeds, for example, during engine idle conditions. The main goal of this investigation is to predict the response of a CPVA/rotor system in the presence of gravity. A linearized model which includes the effects of gravity and an order n torque acting on the rotor is analyzed by exploiting the cyclic symmetry of the system. The results show that the N absorbers respond in one or more groups, where the absorbers in each group respond with identical waveforms but shifted phases. The number of groups depends on the engine order n and the ratio Nn. It is shown that there are special resonant effects if the engine order is n = 1 or n = 2, the latter of which is particularly important in applications. In addition, it is shown that for N > 1 the rotor response is not affected by gravity, due to the symmetry of the gravity effects. The analytical predictions are verified by direct simulations of the equations of motion.


Sign in / Sign up

Export Citation Format

Share Document