Fermentation of Saccharomyces cerevisiae – Combining kinetic modeling and optimization techniques points out avenues to effective process design

2018 ◽  
Vol 453 ◽  
pp. 125-135 ◽  
Author(s):  
Johannes Scheiblauer ◽  
Stefan Scheiner ◽  
Martin Joksch ◽  
Barbara Kavsek
2011 ◽  
Vol 10 (1) ◽  
pp. 33 ◽  
Author(s):  
William A Rodríguez-Limas ◽  
Keith EJ Tyo ◽  
Jens Nielsen ◽  
Octavio T Ramírez ◽  
Laura A Palomares

Author(s):  
R. Venkata Rao

Weld quality is greatly affected by the operating process parameters in the gas metal arc welding (GMAW) process. The quality of the welded material can be evaluated by many characteristics, such as bead geometric parameters, deposition efficiency, weld strength, weld distortion, et cetera. These characteristics are controlled by a number of welding process parameters, and it is important to set up proper process parameters to attain good quality. Various optimization methods can be applied to define the desired process output parameters through developing mathematical models to specify the relationship between the input parameters and output parameters. The method capable of accurate prediction of welding process output parameters would be valuable for rapid development of welding procedures and for developing control algorithms in automated welding applications. This chapter presents the details of various techniques used for modeling and optimization of GMAW process parameters. The optimization methods covered in this chapter are appropriate for modeling and optimizing the GMAW process. It is found that there is high level of interest in the adaptation of RSM and ANN techniques to predict responses and to optimize the GMAW process. Combining two optimization techniques, such as GA and RSM, would reveal good results for finding out the optimal welding conditions. Furthermore, efforts are required to apply advanced optimization techniques to find out the optimal parameters for GMAW process at which the process could be considered safe and more economical.


Author(s):  
Indrajit Mukherjee ◽  
Pradip Kumar Ray

A typical grinding process is an essential manufacturing operation and has been considered to be a precise and economical means of shaping the parts into the final products with required surface finish and high dimensional accuracy. The need to economically process hard and tough materials which can withstand varying stress conditions to ensure prolonged service life of parts has become a real challenge for researchers and practitioners. In this context, with the advance development and automation of grinding processes, use of appropriate modelling and optimization techniques has been continually emphasized. In view different types of end product and process requirements in grinding processes, optimization often becomes non-linear, multiple response constrained problem with multi-modal distribution of response quality characteristics. The objective of this study is to apply back propagation neural network modelling technique for prediction of a computer numeric-controlled (CNC) rough grinding process behaviour, and thereby determine overall near optimal process design using real coded genetic algorithm. The study proposes an integrated approach using back propagation neural network algorithm, composite desirability function, and real-coded genetic algorithm. The effectiveness and suitability of the approach is determined based on data analysis of a single-pass 6-cylinder engine liner CNC rough grinding (honing) operation in a leading automotive manufacturing unit in India.


Sign in / Sign up

Export Citation Format

Share Document