fixed bed adsorption
Recently Published Documents


TOTAL DOCUMENTS

302
(FIVE YEARS 81)

H-INDEX

38
(FIVE YEARS 5)

Catalysts ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 95
Author(s):  
Chu-Chin Hsieh ◽  
Jyong-Sian Tsai ◽  
Hwo-Shuenn Sheu ◽  
Jen-Ray Chang

V2O5/NaY-SiO2 adsorbents were prepared by soaking up vanadium oxalate precursors into pellet NaY-SiO2. The NaY-SiO2 supports were prepared from NaY-SiO2 dough followed by extrusion and calcination at 450 °C. Ethanol was used as a model adsorbate to test the performance of the adsorbents. The regeneration efficacy, defined as the ratio of the adsorption capacity of a regenerated adsorbent to that of the fresh adsorbent, was investigated through the dynamics of fixed-bed adsorption (breakthrough curve). TPO, DSC, and FT-IR were used to characterize carbonaceous species on the adsorbents; meanwhile, synchrotron XRPD, XAS, and the N2 isotherm were used to characterize the zeolite, vanadia structure, and surface area, respectively. The results indicated that in low temperature (300 °C) regeneration, adsorption sites covered by alkylated aromatic coke formed during regeneration, causing adsorbent deactivation. In contrast, during regeneration at a high temperature (450 °C), the deactivation was caused by the destruction of the NaY framework concomitant with channel blockage, as suggested by the BET surface area combined with Rietvelt XRPD refinement results. In addition, the appearance of V-O-V contribution in the EXAFS spectra indicated the aggregation of isolated VO4, which led to a decrease in the combustion rate of the carbonaceous species deposited on the adsorbents. For regeneration at 350 and 400 °C, only trace coke formation and minor structural destruction were observed. Long-term life tests indicated that regeneration at 400 °C presents a higher maintenance of stability.


Author(s):  
Mohammad Akbari Zadeh ◽  
Allahyar Daghbandan ◽  
Behrouz Abbasi Souraki

Abstract Background The presence of iron (Fe) and manganese (Mn) ions in rocky beds leads to groundwater pollution. Moreover, their excessive concentration causes bad taste and color stains of water. Methods Tea leaves-derived char (TLC), rice straw-derived char (RSC), and nanosilica (NS) were used to adsorb Fe and Mn ions from water sources. The effects of parameters such as contact time, composition percentage, and particle size of biosorbents in a fixed-bed adsorption column were investigated. Results The study on the adsorption of Fe and Mn ions showed that the amount of adsorption increased significantly by decreasing the particle size. Furthermore, the combination of nano-biosorbents with nanosilica improved the adsorption. The Thomas and Adams–Bohart models adequately indicated the adsorption of Fe and Mn ions onto nano-biosorbents in the column mode. The TLC and RSC with NS are applicable for the removal of Fe and Mn ions from groundwater. Conclusions According to the BET analysis results, with more crushing of biosorbents by ball mill and placing them in the furnace, specific surface area of tea leaves and rice straw increased from 0.29 to 3.45 and from 3.70 to 10.99 m2/g, respectively. The absorption of iron and manganese from the aqueous solution increased with the percentage of nano-silica. According to breakthrough curves, under best conditions (the seventh mode), nano-biosorbents could remove 98.05% and 97.92% of iron and manganese ions, respectively. The maximum equilibrium capacity of the adsorption column (mg/g) was 256.56 for iron and 244.79 for manganese. Graphical abstract


Energies ◽  
2022 ◽  
Vol 15 (1) ◽  
pp. 347
Author(s):  
Cong Yang ◽  
Yifei Wang ◽  
Abdullatif Alfutimie

To support a sustainable energy development, CO2 reduction for carbon neutralization and water-splitting for hydrogen economy are two feasible technical routes, both of which require a significant input of renewable energies. To efficiently store renewable energies, secondary batteries will be applied in great quantity, so that a considerable amount of energy needs to be invested to eliminate the waste battery electrolyte pollution caused by heavy metals including Cu2+, Zn2+ and Pb2+. To reduce this energy consumption, the removal behaviors of these ions by using clinoptilolite and zeolite A under 5, 7 and 10 BV h−1 in a fixed-bed reactor were investigated. The used zeolites were then regenerated by a novel NH4Cl solution soaking, coupled with the ultrasonication method. Further characterizations were carried out using scanning electron microscopy, N2 adsorption and desorption test, and wide-angle X-ray diffraction. The adsorption breakthrough curves revealed that the leaching preference of clinoptilolite was Pb2+ > Cu2+ > Zn2+, while the removal sequence for zeolite A was Zn2+ > Cu2+ > Pb2+. The maximum removal percentage of Zn2+ ions for clinoptilolite under 5 BV h−1 was 21.55%, while it was 83.45% for zeolite A. The leaching ability difference was also discussed combining with the characterization results. The fact that unit cell stayed the same before and after the regeneration treatment approved the efficacy of the regeneration method, which detached most of the ions while doing little change to both morphology and crystallinity of the zeolites. By evaluating the pH and conductivity changes, the leaching mechanisms by adsorption and ion exchange were further studied.


2022 ◽  
Vol 302 ◽  
pp. 114100
Author(s):  
Hugo Bacelo ◽  
Sílvia C.R. Santos ◽  
Andreia Ribeiro ◽  
Rui A.R. Boaventura ◽  
Cidália M.S. Botelho

Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7759
Author(s):  
Mieczysław Bałys ◽  
Ewelina Brodawka ◽  
Grzegorz Stefan Jodłowski ◽  
Jakub Szczurowski ◽  
Marta Wójcik

Carbonaceous adsorbents have been pointed out as promising adsorbents for the recovery of methane from its mixture with carbon dioxide, including biogas. This is because of the fact that CO2 is more strongly adsorbed and also diffuses faster compared to methane in these materials. Therefore, the present study aimed to test alternative carbonaceous materials for the gas separation process with the purpose of enriching biogas in biomethane and to compare them with the commercial one. Among them was coconut shell activated carbon (AC) as the adsorbent derived from bio-waste, rubber tire pyrolysis char (RPC) as a by-product of waste utilization technology, and carbon molecular sieve (CMS) as the commercial material. The breakthrough experiments were conducted using two mixtures, a methane-rich mixture (consisting of 75% CH4 and 25% CO2) and a carbon dioxide-rich mixture (containing 25% CH4 and 75% CO2). This investigation showed that the AC sample would be a better candidate material for the CH4/CO2 separation using a fixed-bed adsorption column than the commercial CMS sample. It is worth mentioning that due to its poorly developed micropore structure, the RPC sample exhibited limited adsorption capacity for both compounds, particularly for CO2. However, it was observed that for the methane-rich mixture, it was possible to obtain an instantaneous concentration of around 93% CH4. This indicates that there is still much potential for the use of the RPC, but this raw material needs further treatment. The Yoon–Nelson model was used to predict breakthrough curves for the experimental data. The results show that the data for the AC were best fitted with this model.


2021 ◽  
Vol 9 (6) ◽  
pp. 106353
Author(s):  
Cesar Mario Laureano-Anzaldo ◽  
Martín Esteban González-López ◽  
Aida Alejandra Pérez-Fonseca ◽  
Luis Emilio Cruz-Barba ◽  
Jorge Ramón Robledo-Ortíz

2021 ◽  
Vol 24 ◽  
pp. 101888
Author(s):  
Antônio Ewerton da Silva Almeida ◽  
Gabriela Rezende de Souza ◽  
Flávia Vilela Corrêa ◽  
Jaíza Ribeiro Mota e Silva ◽  
Luiz Fernando Coutinho de Oliveira ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document