Modeling and Optimization of Gas Metal Arc Welding (GMAW) Process

Author(s):  
R. Venkata Rao

Weld quality is greatly affected by the operating process parameters in the gas metal arc welding (GMAW) process. The quality of the welded material can be evaluated by many characteristics, such as bead geometric parameters, deposition efficiency, weld strength, weld distortion, et cetera. These characteristics are controlled by a number of welding process parameters, and it is important to set up proper process parameters to attain good quality. Various optimization methods can be applied to define the desired process output parameters through developing mathematical models to specify the relationship between the input parameters and output parameters. The method capable of accurate prediction of welding process output parameters would be valuable for rapid development of welding procedures and for developing control algorithms in automated welding applications. This chapter presents the details of various techniques used for modeling and optimization of GMAW process parameters. The optimization methods covered in this chapter are appropriate for modeling and optimizing the GMAW process. It is found that there is high level of interest in the adaptation of RSM and ANN techniques to predict responses and to optimize the GMAW process. Combining two optimization techniques, such as GA and RSM, would reveal good results for finding out the optimal welding conditions. Furthermore, efforts are required to apply advanced optimization techniques to find out the optimal parameters for GMAW process at which the process could be considered safe and more economical.

Author(s):  
Rudreshi Addamani ◽  
Ravindra Holalu Venkatadas ◽  
Ugrasen Gonchikar ◽  
Y. D. Chethan

The Pulsed Gas Metal Arc Welding (P-GMAW) process is used in high-technology industrial applications and it is one of the most significant arc welding processes. The quality, productivity and cost of welding will be affected by the P-GMAW welding input process parameters and are considered to the most important factors. It is necessary to determine the input and output relationship of the welding processes in order to understand and control the P-GMAW welding process parameters. P-GMAW is widely used process, especially in thin sheet metal industries. It offers an improvement in quality and productivity over regular Gas Metal Arc Welding (GMAW). The process enables stable spray transfer with low mean current and low net heat input. This paper describes the estimation and comparison of welding process parameters viz., current, gas flow rate and wire feed rate on ultimate tensile strength, yield strength, percentage of elongation and hardness. Experiments have been performed based on Taguchi’s L27 standard orthogonal array. Estimation of welding performances have been carried out using sophisticated mathematical models viz., MRA and GMDH, and, compared. The GMDH algorithm is designed to learn the process by training the algorithm with the experimental data. Three different criterion functions, viz., regularity, unbiased and combined criterions were considered for estimation in GMDH. Different GMDH models can be obtained by varying the percentage of data in the training set and the best model can be selected from these, viz., 50%, 62.5% and 75%. Estimation and comparison of welding performances were carried out using MRA and GMDH techniques.


Data in Brief ◽  
2021 ◽  
Vol 35 ◽  
pp. 106790
Author(s):  
Rogfel Thompson Martinez ◽  
Guillermo Alvarez Bestard ◽  
Sadek C. Absi Alfaro

Metals ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 1077 ◽  
Author(s):  
Seungmin Shin ◽  
Sehun Rhee

In this study, lap joint experiments were conducted using galvanized high-strength steel, SGAFH 590 FB 2.3 mmt, which was applied to automotive chassis components in the gas metal arc welding (GMAW) process. Zinc residues were confirmed using a semi-quantitative energy dispersive X-ray spectroscopy (EDS) analysis of the porosity in the weld. In addition, a tensile shear test was performed to evaluate the weldability. Furthermore, the effect of porosity defects, such as blowholes and pits generated in the weld, on the tensile shear strength was experimentally verified by comparing the porosity at the weld section of the tensile test specimen with that measured through radiographic testing.


Sign in / Sign up

Export Citation Format

Share Document