scholarly journals Gene array analysis of a rat model of pulmonary arteriovenous malformations after superior cavopulmonary anastomosis

2008 ◽  
Vol 136 (2) ◽  
pp. 283-289 ◽  
Author(s):  
Russell S. Tipps ◽  
Muhammed Mumtaz ◽  
Patrick Leahy ◽  
Brian W. Duncan
2002 ◽  
Vol 283 (5) ◽  
pp. H2151-H2156 ◽  
Author(s):  
Sandra L. Starnes ◽  
Brian W. Duncan ◽  
Charles H. Fraga ◽  
Shailesh Y. Desai ◽  
Thomas K. Jones ◽  
...  

We developed a rat model of pulmonary arteriovenous malformations after cavopulmonary anastomosis. We sought to determine whether this model reproduces the angiographic and histologic features seen in the human condition. Eight Sprague-Dawley rats underwent a right superior cavopulmonary anastomosis with the use of microsurgical techniques. Between 2 and 13 mo, pulmonary angiography was performed, the animals were euthanized, and the lungs were removed. Microscopic sections of the lung were stained with an endothelial-specific antibody (von Willebrand factor). Microvessel density was determined by counting vessels staining positively for von Willebrand factor, and the shunted and nonshunted (control) lungs were compared for each animal. Pulmonary angiography revealed time-dependent development of arteriovenous malformations. Microvessel density demonstrated a time-dependent increase in the shunted lung compared with the control lung (simple linear regression of the ratio of the microvessel density of the shunted lung divided by the microvessel density of the control lung on time; R 2 = 0.79, P = 0.003). This animal model reproduces the same angiographic and microscopic features of pulmonary arteriovenous malformations that develop in humans after cavopulmonary anastomosis. This appears to be a valid model that may be used to further study etiologic mechanisms for this phenomenon.


2008 ◽  
Vol 3 ◽  
pp. BMI.S600 ◽  
Author(s):  
S. Chiosea ◽  
M. Acquafondata ◽  
J. Luo ◽  
SF. Kuan ◽  
RR. Seethala

Differential microRNA expression in colon adenocarcinoma (CA) was previously reported. MicroRNA biogenesis and function requires a set of proteins designated as the microRNA machinery, which includes DICER1 and PRKRA. Loss of heterozygosity at 14q32.13 DICER1 locus was detected in up to 60% of CA cases. The in silico gene array analysis of CA showed down-regulation of DICER1 and an up-regulation of PRKRA. Immunohistochemically, DICER1 expression was abnormal in 65% of CA (95 of 147 cases). PRKRA was deregulated in 70% of CA (32 of 46 cases). Expression of DICER1 and PRKRA was correlated with clinicopathologic features of CA. DICER1 up-regulation was seen more commonly in women. Only 10 of 46 cases immunostained for both DICER1 and PRKRA showed normal levels of both DICER1 and PRKRA. Microsatellite status of 32 cases was determined. Microsatellite instable cases showed DICER1 up-regulation more commonly when compared to microsatellite stable cases; however, this trend was not statistically significant. Abnormal DICER1 and/or PRKRA expression might explain the observed changes in microRNA profile. The status of the endogenous DICER1 and PRKRA in CA may help to predict the response to future RNA interference-based therapy.


2002 ◽  
Vol 942 (1-2) ◽  
pp. 120-123 ◽  
Author(s):  
Stacey A. Trotter ◽  
Louis B. Brill II ◽  
James P. Bennett

2001 ◽  
Vol 120 (5) ◽  
pp. A88
Author(s):  
Qingding Wang ◽  
Robert Thomas ◽  
Nan Li ◽  
Xiaofu Wang ◽  
B. Mark Evers

1997 ◽  
Vol 7 (4) ◽  
pp. 370-374 ◽  
Author(s):  
Blair Marshall ◽  
Brian W. Duncan ◽  
Richard A. Jonas

AbstractPulmonary arteriovenous malformations are a frequent cause of progressive cyanosis after construction of a cavopulmonary anastomosis. Their formation complicates the management of children with single ventricle physiology after a bidirectional Glenn shunt or the Kawashima procedure. The key role of the liver in this phenomenon is suggested by the observation that providing modifications of the Fontan procedure which permit hepatic venous effluent to reach the pulmonary arterial circulation limit further development of the malformations. In addition, it is known that patients with end-stage hepatic failure develop pulmonary arteriovenous malformations that diminish after liver transplantation. We have begun purification of a factor derived from hepatocyte-conditioned media that is inhibitory for the proliferation of cultured endothelial cells. This substance is heat sensitive, and binds avidly to a copper-containing chromatography column. These clinical observations, and this preliminary experimental work, support the concept that hepatic-derived angiogenic factors may play a role in the development of pulmonary arteriovenous malformations after construction of cavopulmonary anastomoses.


Sign in / Sign up

Export Citation Format

Share Document