Equivalent boundary model of lunar soil drilling simulation by DEM

2020 ◽  
Vol 91 ◽  
pp. 85-95 ◽  
Author(s):  
Tianxi Liu ◽  
Lei Liang ◽  
Yang Zhao ◽  
Dengqing Cao
Author(s):  
Rubens Augusto Amaro Junior ◽  
Lucas Soares Pereira ◽  
Liang-Yee Cheng ◽  
Ahmad Shakibaeinia

2019 ◽  
Vol 943 (1) ◽  
pp. 68-75
Author(s):  
S.G. Pugacheva ◽  
E.A. Feoktistova ◽  
V.V. Shevchenko

The article presents the results of astrophysical studies of the Moon’s reflected and intrinsic radiation. We studied the intensity of the Moon’s infrared radiation and, thus, carried out a detailed research of the brightness temperature of the Moon’s visible disc, estimated the thermal inertia of the coating substance by the rate of its surface cooling, and the degree of the lunar soil fragmentation. Polarimetric, colorimetric and spectrophotometric measurements of the reflected radiation intensity were carried out at different wavelengths. In the article, we present maps prepared based on our measurement results. We conducted theresearch of the unique South Pole – Aitken basin (SPA). The altitude profiles of the Apollo-11 and Zond-8 spacecrafts and the data of laser altimeters of the Apollo-16 and Apollo-15 spacecrafts were used as the main material. Basing upon this data we prepared a hypsometric map of SPA-basing global relief structure. A surface topography map of the Moon’s Southern Hemisphere is given in the article. The topography model of the SPA topography surface shows displacement centers of the altitude topographic rims from the central rim. Basing upon the detailed study of the basin’s topography as well as its “depth-diameter” ratio we suggest that the basin originated from the impact of a giant cometary body from the Orta Cloud. In our works, we consider the Moon as a part of the Earth’s space infrastructure. High growth rates of the Earth’s population, irrational nature management will cause deterioration of scarce natural resources in the near future. In our article, we present maps of the natural resources on the Moon pointing out the most promising regions of thorium, iron, and titanium. Probably in 20 or 40 years a critical mining level of gold, diamonds, zinc, platinum and other vital rocks and metals will be missing on the Earth.


1989 ◽  
Vol 4 (4) ◽  
pp. 795-801 ◽  
Author(s):  
C. J. Jou ◽  
J. Washburn

A nucleation-and-growth mechanism for the twin formation in YBa2Cu3O7–δ superconductors based on the oxygen uptake rate curve and published transmission electron microscopic observations is proposed together with an oxygen-depleted twin boundary model. The difficulty of reaching stoichiometric YBa2Cu3O7 is explained.


2021 ◽  
Vol 13 (1) ◽  
pp. 690-704
Author(s):  
Lichun Sui ◽  
Jianfeng Zhu ◽  
Mianqing Zhong ◽  
Xue Wang ◽  
Junmei Kang

Abstract Various means of extracting road boundary from mobile laser scanning data based on vehicle trajectories have been investigated. Independent of positioning and navigation data, this study estimated the scanner ground track from the spatial distribution of the point cloud as an indicator of road location. We defined a typical edge block consisting of multiple continuous upward fluctuating points by abrupt changes in elevation, upward slope, and road horizontal slope. Subsequently, such edge blocks were searched for on both sides of the estimated track. A pseudo-mileage spacing map was constructed to reflect the variation in spacing between the track and edge blocks over distance, within which road boundary points were detected using a simple linear tracking model. Experimental results demonstrate that the ground trajectory of the extracted scanner forms a smooth and continuous string just on the road; this can serve as the basis for defining edge block and road boundary tracking algorithms. The defined edge block has been experimentally verified as highly accurate and strongly noise resistant, while the boundary tracking algorithm is simple, fast, and independent of the road boundary model used. The correct detection rate of the road boundary in two experimental data is more than 99.2%.


Sign in / Sign up

Export Citation Format

Share Document