scholarly journals Comparison of wheel load application methods in single-wheel testbeds

2022 ◽  
Vol 99 ◽  
pp. 35-55
Author(s):  
Adriana Daca ◽  
Amir Ali Forough Nassiraei ◽  
Dominique Tremblay ◽  
Krzysztof Skonieczny
2013 ◽  
Vol 41 (4) ◽  
pp. 232-246
Author(s):  
Timo Völkl ◽  
Robert Lukesch ◽  
Martin Mühlmeier ◽  
Michael Graf ◽  
Hermann Winner

ABSTRACT The potential of a race tire strongly depends on its thermal condition, the load distribution in its contact patch, and the variation of wheel load. The approach described in this paper uses a modular structure consisting of elementary blocks for thermodynamics, transient excitation, and load distribution in the contact patch. The model provides conclusive tire characteristics by adopting the fundamental parameters of a simple mathematical force description. This then allows an isolated parameterization and examination of each block in order to subsequently analyze particular influences on the full model. For the characterization of the load distribution in the contact patch depending on inflation pressure, camber, and the present force state, a mathematical description of measured pressure distribution is used. This affects the tire's grip as well as the heat input to its surface and its casing. In order to determine the thermal condition, one-dimensional partial differential equations at discrete rings over the tire width solve the balance of energy. The resulting surface and rubber temperatures are used to determine the friction coefficient and stiffness of the rubber. The tire's transient behavior is modeled by a state selective filtering, which distinguishes between the dynamics of wheel load and slip. Simulation results for the range of occurring states at dry conditions show a sufficient correlation between the tire model's output and measured tire forces while requiring only a simplified and descriptive set of parameters.


Alloy Digest ◽  
1995 ◽  
Vol 44 (8) ◽  

Abstract Wallex Nos. 55 and 505 are similar composite hardfacing powders with different mesh size for different application methods. The minimum hardness is RC 58. This datasheet provides information on composition, physical properties, and hardness. It also includes information on corrosion resistance as well as powder metal forms. Filing Code: CO-98. Producer or source: Wall Colmonoy Corporation.


2000 ◽  
Vol 1696 (1) ◽  
pp. 144-149 ◽  
Author(s):  
Sami W. Tabsh ◽  
Muna Tabatabai

An important problem facing engineers and officials in the United States is the constraint imposed on transportation due to limitations of bridges. These limitations typically constrain vehicles to minimum heights and widths, to minimum and maximum lengths, and to a maximum allowable weight. However, with current demands of society and industry, there are times when a truck must carry a load that exceeds the size and weight of the legal limit. In this situation, the trucking company requests from the state departments of transportation an overload permit. For a truck with a wheel gauge larger than 1.8 m (6 ft), the process of issuing a permit for an overload truck requires a tremendous amount of engineering efforts. This is because the wheel load girder distribution factors (GDFs) in the design specifications cannot be used to estimate the live-load effect in the girders. In some cases, an expensive and time-consuming finite element analysis may be needed to check the safety of the structure. In this study, the finite element method is used to develop a modification factor for the GDF in AASHTO’s LRFD Bridge Design Specifications to account for oversized trucks with a wheel gauge larger than 1.8 m. To develop this factor, nine bridges were considered with various numbers of girders, span lengths, girder spacings, and deck slab thicknesses. The results indicated that use of the proposed modification factor with the GDF in the design specifications can help increase the allowable load on slab-on-girder bridges.


Author(s):  
Saidajan Attiq Abdiani ◽  
Kifayatullah Kakar ◽  
Gulbuddin Gulab ◽  
Shafiqullah Aryan

Sign in / Sign up

Export Citation Format

Share Document