scholarly journals Body temperature in premature infants during the first week of life: Exploration using infrared thermal imaging

2017 ◽  
Vol 69 ◽  
pp. 118-123 ◽  
Author(s):  
Robin B. Knobel-Dail ◽  
Diane Holditch-Davis ◽  
Richard Sloane ◽  
B.D. Guenther ◽  
Laurence M. Katz
2013 ◽  
Vol 13 (02) ◽  
pp. 1350045 ◽  
Author(s):  
E. F. J. RING ◽  
A. JUNG ◽  
B. KALICKI ◽  
J. ZUBER ◽  
A. RUSTECKA ◽  
...  

Infrared thermal imaging has in recent years become more accessible and affordable as a means of remote sensing for human body temperature such as in identifying a person with fever. The implementation and operational guidelines for identifying a febrile human using a screening thermograph as documented in the ISO/TR 13154:2009 ISO/TR 80600 has been deployed for the screening of a total of 402 children. It was found that there was a significant difference between the temperatures measured in non-fevered patients and those with known fever, with the thermal imaging of the eye region being the most rapid non-contact site for measurement.


2014 ◽  
Vol 54 (9) ◽  
pp. 1497 ◽  
Author(s):  
S. A. McCoard ◽  
H. V. Henderson ◽  
F. W. Knol ◽  
S. K. Dowling ◽  
J. R. Webster

The combination of heat generation and reducing heat loss from the skin surface is important for maintaining core body temperature in a neonate. Thermogenesis studies traditionally focus on measurement of core body temperature but not the contribution of radiated heat loss at the skin surface. This study aimed to evaluate the utility of using thermal imaging to measure radiated heat loss in newborn lambs. Continuous thermal images of newborn lambs were captured for 30 min each during the baseline (11−18°C), cold-exposure (0°C) and recovery (11−18°C) periods by using an infrared camera. Core body temperature measured by rectal thermometer was also recorded at the end of each period. In all, 7 of the 10 lambs evaluated had reduced rectal temperatures (0.4−1°C) between the baseline and recovery periods, while three maintained body temperature despite cold exposure. During the baseline period, infrared heat loss was relatively stable, followed by a rapid decrease of 5°C within 5 min of cold exposure. Heat loss continued to decrease linearly in the cold-exposure period by a further 10°C, but increased rapidly to baseline levels during the recovery period. A temperature change of between 20°C and 35°C was observed during the study, which was likely to be due to changes in vasoconstriction in the skin to conserve heat. The present study has highlighted the sensitivity of infrared thermal imaging to estimate heat loss from the skin in the newborn lamb and shown that rapid changes in heat loss occur in response to cold exposure.


2021 ◽  
pp. 103789
Author(s):  
Zhuo Li ◽  
Shaojuan Luo ◽  
Meiyun Chen ◽  
Heng Wu ◽  
Tao Wang ◽  
...  

2021 ◽  
Vol 96 ◽  
pp. 102823
Author(s):  
Magdalena Jędzierowska ◽  
Robert Koprowski ◽  
Sławomir Wilczyński ◽  
Dorota Tarnawska

2017 ◽  
Vol 86 ◽  
pp. 120-129 ◽  
Author(s):  
Seydi Kacmaz ◽  
Ergun Ercelebi ◽  
Suat Zengin ◽  
Sener Cindoruk

2016 ◽  
Author(s):  
M. Chakraborty ◽  
S. Mukhopadhyay ◽  
A. Dasgupta ◽  
S. Banerjee ◽  
S. Mukhopadhyay ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document