scholarly journals Variation in upper thermal tolerance among 19 species from temperate wetlands

2021 ◽  
Vol 96 ◽  
pp. 102856
Author(s):  
Marco Katzenberger ◽  
Helder Duarte ◽  
Rick Relyea ◽  
Juan Francisco Beltrán ◽  
Miguel Tejedo
2021 ◽  
pp. 103022
Author(s):  
Sonya K. Auer ◽  
Emily Agreda ◽  
Angela Chen ◽  
Madiha Irshad ◽  
Julia Solowey

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
J. J. H. Nati ◽  
M. B. S. Svendsen ◽  
S. Marras ◽  
S. S. Killen ◽  
J. F. Steffensen ◽  
...  

AbstractHow ectothermic animals will cope with global warming is a critical determinant of the ecological impacts of climate change. There has been extensive study of upper thermal tolerance limits among fish species but how intraspecific variation in tolerance may be affected by habitat characteristics and evolutionary history has not been considered. Intraspecific variation is a primary determinant of species vulnerability to climate change, with implications for global patterns of impacts of ongoing warming. Using published critical thermal maximum (CTmax) data on 203 fish species, we found that intraspecific variation in upper thermal tolerance varies according to a species’ latitude and evolutionary history. Overall, tropical species show a lower intraspecific variation in thermal tolerance than temperate species. Notably, freshwater tropical species have a lower variation in tolerance than freshwater temperate species, which implies increased vulnerability to impacts of thermal stress. The extent of variation in CTmax among fish species has a strong phylogenetic signal, which may indicate a constraint on evolvability to rising temperatures in tropical fishes. That is, in addition to living closer to their upper thermal limits, tropical species may have higher sensitivity and lower adaptability to global warming compared to temperate counterparts. This is evidence that freshwater tropical fish communities, worldwide, are especially vulnerable to ongoing climate change.


2021 ◽  
Vol 21 ◽  
pp. 100845
Author(s):  
Leticia E. Fantini ◽  
Matthew A. Smith ◽  
Michele Jones ◽  
Luke A. Roy ◽  
Rebecca Lochmann ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document