Effects of rearing temperature on egg incubation, growth, standard metabolic rate, and thermal tolerance of chocolate mahseer, Neolissochilus hexagonolepis

2021 ◽  
Vol 98 ◽  
pp. 102942
Author(s):  
Pragyan Dash ◽  
Ritesh Shantilal Tandel ◽  
Nityanand Pandey ◽  
Paramita Banerjee Sawant ◽  
Debajit Sarma ◽  
...  
2018 ◽  
Vol 44 (3) ◽  
pp. 476-481 ◽  
Author(s):  
Ken G. Drouillard ◽  
David A. Feary ◽  
Xin Sun ◽  
Jessica A. O'Neil ◽  
Todd Leadley ◽  
...  

2016 ◽  
Vol 50 (1) ◽  
pp. 138-144
Author(s):  
Patrick J Ruhl ◽  
Robert N Chapman ◽  
John B. Dunning

Crustaceana ◽  
2021 ◽  
Vol 94 (2) ◽  
pp. 159-175
Author(s):  
Zechariah C. Harris ◽  
Jonathan C. Wright

Abstract Venezillo arizonicus (Mulaik & Mulaik, 1942) is the only oniscidean isopod native to the Southwest Desert Province of North America. In accordance with its desert habitat, we hypothesized that V. arizonicus would have a higher upper lethal temperature than mesic oniscideans. If oniscidean thermal tolerance is limited by an oxygen consumption-uptake mismatch (physiological hypoxia), as indicated by recent work with other land isopods, we further hypothesized that V. arizonicus would possess highly efficient pleopodal lungs, as defined by its capacity for metabolic regulation in reduced . Other adaptations to counter oxygen limitation at high temperatures could include reduced temperature sensitivity of metabolism (low ) and an overall reduction in metabolic rate. Thermal tolerance was measured using the progressive method of Cowles & Bogert and the catabolic rate of animals () was measured as a function of temperature and . The critical thermal maximum (CTmax) of winter-acclimatized animals was 43.0 ± 0.85°C, 1.6-2.6°C higher than published values for summer-acclimatized mesic oniscideans. The catabolic rate at 25°C was 1.50 ± 0.203 μl min−1 g−1, markedly lower than values determined for mesic Oniscidea (4-6 μl min−1 g−1) and was unaffected by hypoxia as low as 2% O2 (ca. 2 kPa). Catabolism was, however, quite sensitive to temperature, showing a mean of 2.58 over 25-42°C. The efficient pleopodal lungs and low metabolic rate of V. arizonicus will both tend to mitigate physiological hypoxia, consistent with the species’ high CTmax. A low catabolic rate may also be an adaptation to low habitat productivity and seasonally constrained activity patterns.


2020 ◽  
Vol 34 (6) ◽  
pp. 1205-1214 ◽  
Author(s):  
Natalie Pilakouta ◽  
Shaun S. Killen ◽  
Bjarni K. Kristjánsson ◽  
Skúli Skúlason ◽  
Jan Lindström ◽  
...  

1976 ◽  
Vol 231 (3) ◽  
pp. 903-912 ◽  
Author(s):  
B Pinshow ◽  
MA Fedak ◽  
DR Battles ◽  
K Schmidt-Nielsen

During the antarctic winter emperor penguins (Aptenodytes forsteri) spend up to four mo fasting while they breed at rookeries 80 km or more from the sea, huddling close together in the cold. This breeding cycle makes exceptional demands on their energy reserves, and we therefore studied their thermoregulation and locomotion. Rates of metabolism were measured in five birds (mean body mass, 23.37 kg) at ambient temperatures ranging from 25 to -47 degrees C. Between 20 and -10 degrees C the metabolic rate (standard metabolic rate (SMR)) remained neraly constant, about 42.9 W. Below -10 degrees C metabolic rate increased lineraly with decreasing ambient temperature and at -47 degrees C it was 70% above the SMR. Mean thermal conductance below -10 degrees C was 1.57 W m-2 degrees C-1. Metabolic rate during treadmill walking increased linearly with increasing speed. Our data suggest that walking 200 km (from the sea to the rookery and back) requires less than 15% of the energy reserves of a breeding male emperor penguin initially weighing 35 kg. The high energy requirement for thermoregulation (about 85%) would, in the absence of huddling, probably exceed the total energy reserves.


2000 ◽  
pp. 413-430 ◽  
Author(s):  
Martin D. Brand ◽  
Tammie Bishop ◽  
Robert G. Boutilier ◽  
Julie St-Pierre

Sign in / Sign up

Export Citation Format

Share Document