A categorisation system for Australia's Integrated Urban Water Management plans

2017 ◽  
Vol 48 ◽  
pp. 92-102 ◽  
Author(s):  
Lachlan Guthrie ◽  
Saman De Silva ◽  
Casey Furlong
2006 ◽  
Vol 54 (6-7) ◽  
pp. 395-403 ◽  
Author(s):  
L. Wolf ◽  
J. Klinger ◽  
I. Held ◽  
H. Hötzl

The management of urban groundwater resources is directly linked to urban water supply and drainage concepts. A proper integration of groundwater into urban water management plans is recommended for long-term planning. The paper describes the development of a new modelling suite which addresses the urban water and solute balance in a holistic way. Special focus has been placed on the assessment of the impact of sewer leakage on groundwater in four case study cities. Tools for the prediction of sewer leakage including the assessment of uncertainties are now available. Field investigations in four European case study cities were able to trace the influence of sewer leakage on urban groundwater using microbiological indicators and pharmaceutical residues.


2020 ◽  
Vol 34 (13) ◽  
pp. 4253-4269 ◽  
Author(s):  
José Matheus Bezerra dos Santos Amorim ◽  
Saulo de Tarso Marques Bezerra ◽  
Maísa Mendonça Silva ◽  
Lyanne Cibely Oliveira de Sousa

2006 ◽  
Vol 6 (2) ◽  
pp. 1-7 ◽  
Author(s):  
J. Hunt ◽  
M. Anda ◽  
K. Mathew ◽  
G. Ho

Integrated Urban Water Management (IUWM) in land developments is becoming increasingly necessary in order to more efficiently utilise and manage water resources. Techniques including the control of stormwater runoff, increasing infiltration and providing opportunities for retention, treatment and reuse of both stormwater and wastewater, are well suited to being designed into the development rather than considered post-construction or not at all. There can be extensive capital investment by developers to implement IUWM which is often not returned in the land sales. This produces a disincentive for the developer unless the contribution is recognised and rewarded either financially or with appropriate marketing advantage. A system to rate land developments based upon IUWM has been developed that would quantifiably assess how effectively water resources would be utilised in a proposed land development. This assessment would provide a point of comparison between developments allowing property purchasers, developers, utilities and legislators to quickly compare how well the development performs in terms of IUWM, providing a mechanism for financial reward or recognition. This paper discusses the development of a model to quantifiably assess land developments for water efficient use and introduces a rating system with which land developments can be compared in terms of IUWM.


Author(s):  
S. Chandran ◽  
S. R. Thiruchelve ◽  
M. Dhanasekarapandian

Abstract Economic growth of any nation like India depends on growth of cities. In India 31% of total population exists in urban extent. Smart City mission of India was established with the objective to deliver the basic requirements of the citizens in a sustainable manner. Madurai city located at Peninsular India with 1.4 Million population was taken for this study. The objective is to develop an Integrated Urban Water Management Strategy after analysing all the components of Urban Water Cycle such as rainfall, runoff, groundwater and wastewater. The population forecast for 2021 was done for the Local Planning Area (LPA) of 726.34 km2 and the water demand was calculated as 109 Mm3/year. To meet the demand, runoff from the average rainfall was estimated as 393 Mm3/yr using SCS-CN method. The storage capacity in the water bodies to store the Surface water was estimated as 156 Mm3/yr and groundwater recharge potential was estimated as 22 Mm3/yr. The Integrated Urban Water Management strategy developed, shows that there is a huge potential for rainwater storage at the surface level and subsequent recharge through artificial recharge techniques.


Sign in / Sign up

Export Citation Format

Share Document