scholarly journals Cost-Effectiveness Analysis of Serum Free Light Chain Assay (FREELITE®) for The Diagnosis of Monoclonal Gammopathy in The Brazilian Public and Private Healthcare Systems

2016 ◽  
Vol 19 (7) ◽  
pp. A696-A697
Author(s):  
BS Riveros ◽  
F Caporal ◽  
E Soares ◽  
F Facco
2017 ◽  
Vol 142 (4) ◽  
pp. 507-515 ◽  
Author(s):  
Jonathan R. Genzen ◽  
David L. Murray ◽  
Gyorgy Abel ◽  
Qing H. Meng ◽  
Richard J. Baltaro ◽  
...  

Context.— Serum tests used for the screening and diagnosis of monoclonal gammopathies include serum protein electrophoresis (SPE; agarose gel or capillary zone), immunofixation (IFE) and immunosubtraction capillary electrophoresis, serum free light chains, quantitative immunoglobulins, and heavy/light–chain combinations. Urine protein electrophoresis and urine IFE may also be used to identify Bence-Jones proteinuria. Objective.— To assess current laboratory practice for monoclonal gammopathy testing. Design.— In April 2016, a voluntary questionnaire was distributed to 923 laboratories participating in a protein electrophoresis proficiency testing survey. Results.— Seven hundred seventy-four laboratories from 38 countries and regions completed the questionnaire (83.9% response rate; 774 of 923). The majority of participants (68.6%; 520 of 758) used agarose gel electrophoresis as their SPE method, whereas 31.4% (238 of 758) used capillary zone electrophoresis. The most common test approaches used in screening were SPE with reflex to IFE/immunosubtraction capillary electrophoresis (39.3%; 299 of 760); SPE only (19.1%; 145 of 760); SPE and IFE or immunosubtraction capillary electrophoresis (13.9%; 106 of 760); and SPE with IFE, serum free light chain, and quantitative immunoglobulins (11.8%; 90 of 760). Only 39.8% (305 of 767) of laboratories offered panel testing for ordering convenience. Although SPE was used by most laboratories in diagnosing new cases of myeloma, when laboratories reported the primary test used to follow patients with monoclonal gammopathy, only 55.7% (403 of 724) chose SPE, with the next most common selections being IFE (18.9%; 137 of 724), serum free light chain (11.7%; 85 of 724), and immunosubtraction capillary electrophoresis (2.1%; 15 of 724). Conclusions.— Ordering and testing practices for the screening and diagnosis of monoclonal gammopathy vary widely across laboratories. Improving utilization management and report content, as well as recognition and development of laboratory-directed testing guidelines, may serve to enhance the clinical value of testing.


2009 ◽  
Vol 5 (11) ◽  
pp. 621-628 ◽  
Author(s):  
Colin A. Hutchison ◽  
Kolitha Basnayake ◽  
Paul Cockwell

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 5011-5011
Author(s):  
Jerry A. Katzmann ◽  
Angela Dispenzieri ◽  
Robert Kyle ◽  
Melissa R. Snyder ◽  
Mathew F. Plevak ◽  
...  

Abstract Due to the diagnostic sensitivity of serum free light chain quantitation for monoclonal light chain diseases, it has been suggested that urine assays no longer need be performed as part of the diagnostic algorithm for monoclonal proteins. We reviewed our experience to determine the relative diagnostic contribution of urine assays. Methods: Patients with a monoclonal gammopathy and monoclonal urinary protein at initial diagnosis who also had a serum immunofixation and serum free light chain quantitation within 30 days of diagnosis were identified (n = 428). The laboratory results for serum protein electrophoresis, serum immunofixation, serum free light chain, urine protein electrophoresis, and urine immunofixation were reviewed. Results: The patients in this cohort had diagnoses of multiple myeloma, primary amyloid, monoclonal gammopathy of undetermined significance, smoldering multiple myeloma, solitary plasmacytomas, and other less frequently detected monoclonal gammopathies. By definition of the cohort, all 428 had a monoclonal urine protein. 86% had an abnormal serum free light chain K/L ratio, 81% had an abnormal serum protein electrophoresis, and 94% had an abnormal serum immunofixation. In only 2 patients, however, were all 3 serum assays normal. Both of these were patients with monoclonal gammopathy of undetermined significance (idiopathic Bence Jones proteinuria). Conclusion: Discontinuation of urine studies and reliance on a diagnostic algorithm using solely serum studies (protein electrophoresis, immunofixation, and free light chain quantitation), missed 2 of the 428 monoclonal gammopathies (0.5 %) with urinary monoclonal proteins, and these 2 cases required no medical intervention.


Author(s):  
Richard B Fulton ◽  
Suran L Fernando

Background The potential for serum free light chain (sFLC) assay measurements to replace urine electrophoresis (uEPG) and to also diminish the need for serum immunofixation (sIFE) in the screening for monoclonal gammopathy was assessed. A testing algorithm for monoclonal protein was developed based on our data and cost analysis. Methods Data from 890 consecutive sFLC requests were retrospectively analysed. These included 549 samples for serum electrophoresis (sEPG), 447 for sIFE, and 318 for uEPG and urine immunofixation (uIFE). A total of 219 samples had sFLC, sEPG, sIFE and uEPG + uIFE performed. The ability of different test combinations to detect the presence of monoclonal proteins was compared. Results The sFLC κ/ λ ratio (FLC ratio) indicated monoclonal light chains in 12% more samples than uEPG + uIFE. The combination of sEPG and FLC ratio detected monoclonal proteins in 49% more samples than the combination of sEPG and sIFE. Furthermore, the sEPG + FLC ratio combination detected monoclonal protein in 6% more samples than were detected by the combined performance of sEPG, sIFE, uEPG and uIFE. However, non-linearity of the assay, the expense of repeat determinations due to the narrow measuring ranges, and frequent antigen excess checks were found to be limitations of the sFLC assay in this study. Conclusion The FLC ratio is a more sensitive method than uIFE in the detection of monoclonal light chains and may substantially reduce the need for onerous 24 h urine collections. Our proposed algorithm for the evaluation of monoclonal gammopathy incorporates the sFLC assay, resulting in a reduction in the performance of labour intensive sIFE and uEPG + uIFE while still increasing the detection of monoclonal proteins.


Blood ◽  
2009 ◽  
Vol 113 (22) ◽  
pp. 5418-5422 ◽  
Author(s):  
Brendan M. Weiss ◽  
Jude Abadie ◽  
Pramvir Verma ◽  
Robin S. Howard ◽  
W. Michael Kuehl

Preexisting plasma cell disorders, monoclonal gammopathy of undetermined significance, or smoldering myeloma are present in at least one-third of multiple myeloma patients. However, the proportion of patients with a preexisting plasma cell disorder has never been determined by laboratory testing on prediagnostic sera. We cross-referenced our autologous stem cell transplantation database with the Department of Defense Serum Repository. Serum protein electrophoresis, immunofixation electrophoresis, and serum free light-chain analysis were performed on all sera collected 2 or more years before diagnosis to detect a monoclonal gammopathy (M-Ig). In 30 of 90 patients, 110 prediagnostic samples were available from 2.2 to 15.3 years before diagnosis. An M-Ig was detected initially in 27 of 30 patients (90%, 95% confidence interval, 74%-97%); by serum protein electrophoresis and/or immunofixation electrophoresis in 21 patients (77.8%), and only by serum free light-chain analysis in 6 patients (22.2%). Four patients had only one positive sample within 4 years before diagnosis, with all preceding sera negative. All 4 patients with light-chain/nonsecretory myeloma evolved from a light-chain M-Ig. A preexisting M-Ig is present in most multiple myeloma patients before diagnosis. Some patients progress rapidly through a premalignant phase. Light-chain detected M-Ig is a new entity that requires further study.


Sign in / Sign up

Export Citation Format

Share Document