Detection and tracking based tubelet generation for video object detection

Author(s):  
Bin Wang ◽  
Sheng Tang ◽  
Jun-Bin Xiao ◽  
Quan-Feng Yan ◽  
Yong-Dong Zhang
Author(s):  
Tianchen Wang ◽  
Jinjun Xiong ◽  
Xiaowei Xu ◽  
Yiyu Shi

Various convolutional neural networks (CNNs) were developed recently that achieved accuracy comparable with that of human beings in computer vision tasks such as image recognition, object detection and tracking, etc. Most of these networks, however, process one single frame of image at a time, and may not fully utilize the temporal and contextual correlation typically present in multiple channels of the same image or adjacent frames from a video, thus limiting the achievable throughput. This limitation stems from the fact that existing CNNs operate on deterministic numbers. In this paper, we propose a novel statistical convolutional neural network (SCNN), which extends existing CNN architectures but operates directly on correlated distributions rather than deterministic numbers. By introducing a parameterized canonical model to model correlated data and defining corresponding operations as required for CNN training and inference, we show that SCNN can process multiple frames of correlated images effectively, hence achieving significant speedup over existing CNN models. We use a CNN based video object detection as an example to illustrate the usefulness of the proposed SCNN as a general network model. Experimental results show that even a nonoptimized implementation of SCNN can still achieve 178% speedup over existing CNNs with slight accuracy degradation.


2012 ◽  
Vol 03 (01) ◽  
pp. 479-484 ◽  
Author(s):  
Arunachalam V. ◽  
◽  
Sorimuthu I. ◽  
Rajagopal V. ◽  
Sankaragomathi B. ◽  
...  

Computation ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 12
Author(s):  
Evangelos Maltezos ◽  
Athanasios Douklias ◽  
Aris Dadoukis ◽  
Fay Misichroni ◽  
Lazaros Karagiannidis ◽  
...  

Situational awareness is a critical aspect of the decision-making process in emergency response and civil protection and requires the availability of up-to-date information on the current situation. In this context, the related research should not only encompass developing innovative single solutions for (real-time) data collection, but also on the aspect of transforming data into information so that the latter can be considered as a basis for action and decision making. Unmanned systems (UxV) as data acquisition platforms and autonomous or semi-autonomous measurement instruments have become attractive for many applications in emergency operations. This paper proposes a multipurpose situational awareness platform by exploiting advanced on-board processing capabilities and efficient computer vision, image processing, and machine learning techniques. The main pillars of the proposed platform are: (1) a modular architecture that exploits unmanned aerial vehicle (UAV) and terrestrial assets; (2) deployment of on-board data capturing and processing; (3) provision of geolocalized object detection and tracking events; and (4) a user-friendly operational interface for standalone deployment and seamless integration with external systems. Experimental results are provided using RGB and thermal video datasets and applying novel object detection and tracking algorithms. The results show the utility and the potential of the proposed platform, and future directions for extension and optimization are presented.


Sign in / Sign up

Export Citation Format

Share Document