Formation of subviral particles of the capsid protein VP2 of infectious bursal disease virus and its application in serological diagnosis

2009 ◽  
Vol 157 (1) ◽  
pp. 84-89 ◽  
Author(s):  
Sohini Dey ◽  
Chitra Upadhyay ◽  
C. Madhan Mohan ◽  
Jag Mohan Kataria ◽  
Vikram N. Vakharia
2007 ◽  
Vol 81 (13) ◽  
pp. 6869-6878 ◽  
Author(s):  
Daniel Luque ◽  
Irene Saugar ◽  
José F. Rodríguez ◽  
Nuria Verdaguer ◽  
Damiá Garriga ◽  
...  

ABSTRACT Infectious bursal disease virus (IBDV), a double-stranded RNA (dsRNA) virus belonging to the Birnaviridae family, is an economically important avian pathogen. The IBDV capsid is based on a single-shelled T=13 lattice, and the only structural subunits are VP2 trimers. During capsid assembly, VP2 is synthesized as a protein precursor, called pVP2, whose 71-residue C-terminal end is proteolytically processed. The conformational flexibility of pVP2 is due to an amphipathic α-helix located at its C-terminal end. VP3, the other IBDV major structural protein that accomplishes numerous roles during the viral cycle, acts as a scaffolding protein required for assembly control. Here we address the molecular mechanism that defines the multimeric state of the capsid protein as hexamers or pentamers. We used a combination of three-dimensional cryo-electron microscopy maps at or close to subnanometer resolution with atomic models. Our studies suggest that the key polypeptide element, the C-terminal amphipathic α-helix, which acts as a transient conformational switch, is bound to the flexible VP2 C-terminal end. In addition, capsid protein oligomerization is also controlled by the progressive trimming of its C-terminal domain. The coordination of these molecular events correlates viral capsid assembly with different conformations of the amphipathic α-helix in the precursor capsid, as a five-α-helix bundle at the pentamers or an open star-like conformation at the hexamers. These results, reminiscent of the assembly pathway of positive single-stranded RNA viruses, such as nodavirus and tetravirus, add new insights into the evolutionary relationships of dsRNA viruses.


2001 ◽  
Vol 75 (22) ◽  
pp. 10815-10828 ◽  
Author(s):  
José R. Castón ◽  
Jorge L. Martı́nez-Torrecuadrada ◽  
Antonio Maraver ◽  
Eleuterio Lombardo ◽  
José F. Rodrı́guez ◽  
...  

ABSTRACT Infectious bursal disease virus (IBDV), a member of the Birnaviridae family, is a double-stranded RNA virus. The IBDV capsid is formed by two major structural proteins, VP2 and VP3, which assemble to form a T=13 markedly nonspherical capsid. During viral infection, VP2 is initially synthesized as a precursor, called VPX, whose C end is proteolytically processed to the mature form during capsid assembly. We have computed three-dimensional maps of IBDV capsid and virus-like particles built up by VP2 alone by using electron cryomicroscopy and image-processing techniques. The IBDV single-shelled capsid is characterized by the presence of 260 protruding trimers on the outer surface. Five classes of trimers can be distinguished according to their different local environments. When VP2 is expressed alone in insect cells, dodecahedral particles form spontaneously; these may be assembled into larger, fragile icosahedral capsids built up by 12 dodecahedral capsids. Each dodecahedral capsid is an empty T=1 shell composed of 20 trimeric clusters of VP2. Structural comparison between IBDV capsids and capsids consisting of VP2 alone allowed the determination of the major capsid protein locations and the interactions between them. Whereas VP2 forms the outer protruding trimers, VP3 is found as trimers on the inner surface and may be responsible for stabilizing functions. Since elimination of the C-terminal region of VPX is correlated with the assembly of T=1 capsids, this domain might be involved (either alone or in cooperation with VP3) in the induction of different conformations of VP2 during capsid morphogenesis.


2003 ◽  
Vol 77 (4) ◽  
pp. 2459-2468 ◽  
Author(s):  
Antonio Maraver ◽  
Roberto Clemente ◽  
Jose Francisco Rodríguez ◽  
Eleuterio Lombardo

ABSTRACT Infectious bursal disease virus (IBDV), a member of the Birnaviridae family, is the causative agent of one of the most important infectious poultry diseases. Major aspects of the molecular biology of IBDV, such as assembly and replication, are as yet poorly understood. We have previously shown that encapsidation of the putative virus-encoded RNA-dependent RNA polymerase VP1 is mediated by its interaction with the inner capsid protein VP3. Here, we report the characterization of the VP1-VP3 interaction. RNase A treatment of VP1- and VP3-containing extracts does not affect the formation of VP1-VP3 complexes, indicating that formation of the complex requires the establishment of protein-protein interactions. The use of a set of VP3 deletion mutants allowed the mapping of the VP1 binding motif of VP3 within a highly charged 16-amino-acid stretch on the C terminus of VP3. This region of VP3 is sufficient to confer VP1 binding activity when fused to an unrelated protein. Furthermore, a peptide corresponding to the VP1 binding region of VP3 specifically inhibits the formation of VP1-VP3 complexes. The presence of Trojan peptides containing the VP1 binding motif in IBDV-infected cells specifically reduces infective virus production, thus showing that formation of VP1-VP3 complexes plays a critical role in IBDV replication.


2009 ◽  
Vol 284 (12) ◽  
pp. 8064-8072 ◽  
Author(s):  
Nerea Irigoyen ◽  
Damià Garriga ◽  
Aitor Navarro ◽  
Nuria Verdaguer ◽  
José F. Rodríguez ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document