Decoding the plumbing system of Nevados de Chillán Volcanic complex, Southern Andes

Author(s):  
Andrés Oyarzún ◽  
Luis E. Lara ◽  
Andrés Tassara
2020 ◽  
Author(s):  
Matteo Lupi ◽  
Daniele Trippanera ◽  
Diego Gonzalez-Vidal ◽  
Andres Tassara ◽  
Sebastiano D'Amico ◽  
...  

<p>It has been shown that in the aftermath of megathrust earthquakes the forearc region moves trenchwards promoting crustal extension alterating the long term stress regime in place before the earthquake during the inter-seismic periods. In the far field such variations are less well-recognised and their influence on volcanic arc activity poorly constrained.</p><p>To tackle this problem we deployed a temporary seismic network in the volcanic arc of Southern Andes from November 2013 to April 2015 to investigate the tectonic deformation imposed by the M8.8 2010 Maule megathrust earthquake. The network is centred on the Nevados de Chillan Volcanic Complex is an Andean-transverse NW-oriented structure whose orientation is not well compatible with the current tectonic regime. The Nevados de Chillan faces one of the regions that slipped the most during the 2010 M8.8 Maule earthquake. The system was also reactivated after the earthquake and its activity is still ongoing at writing.</p><p>We compared the deformation of the geological records such as faults, fractures and dikes (assumed to be representative of inter-seismic periods) against the focal mechanisms inverted from shallow moderate-magnitude earthquakes occurred in the arc from 2010 to 2015. We found out that the geological record shows the imprinting of both long term inter-seismic and perturbed shorter term post-seismic deformation. In particular, the latter may create the conditions to re-activate NW pre-existing tectonic structures enhancing the magma upwelling sitting in the upper lithosphere.</p><p>Our work suggests that the kinematics driving the growth of NW-striking volcanic systems in the Southern Central Andes are affected by both magmatic and tectonic processes, with the latter experiencing short-lived perturbations.</p>


2008 ◽  
Vol 174 (4) ◽  
pp. 284-294 ◽  
Author(s):  
J.M. Ibáñez ◽  
E. Del Pezzo ◽  
C. Bengoa ◽  
A. Caselli ◽  
G. Badi ◽  
...  

2008 ◽  
Vol 65 (2) ◽  
Author(s):  
Simon Pfanzelt ◽  
Jürke Grau ◽  
Roberto Rodríguez

2019 ◽  
Author(s):  
Federico Lucci ◽  
Gerardo Carrasco-Núñez ◽  
Federico Rossetti ◽  
Thomas Theye ◽  
John C. White ◽  
...  

Abstract. Understanding the anatomy of magma plumbing systems of active volcanoes is essential not only for unraveling magma dynamics and eruptive behaviors, but also to define the geometry, depth and temperature of the heat sources for geothermal exploration. The Pleistocene-Holocene Los Humeros volcanic complex is part of the Eastern Trans-Mexican Volcanic Belt (Central Mexico) and it represents one of the most important exploited geothermal fields in Mexico with ca. 90 MW of produced electricity. A field-based petrologic and thermobarometric study of lavas erupted during the Holocene (post-Caldera stage) has been performed with the aim to decipher the anatomy of the magmatic plumbing system existing beneath the caldera. New petrographical, whole rock major element data and mineral chemistry were integrated within a suite of inverse thermobarometric models. Compared with previous studies where a single voluminous melt-controlled magma chamber (or "Standard Model") at shallow depths was proposed, our results support a more complex and realistic scenario characterized by a heterogeneous multilayered system comprising a deep (ca. 30 km) basaltic reservoir feeding progressively shallower and smaller distinct stagnation layers, pockets and batches up to very shallow conditions (1 kbar, ca. 3 km). Evolution of melts in the feeding system is mainly controlled by differentiation processes via fractional crystallization, as recorded by polybaric crystallization of clinopyroxenes and orthopyroxenes. Moreover, this study attempts to emphasize the importance to integrate field-petrography, texture observations and mineral chemistry of primary minerals to unravel the pre-eruptive dynamics and therefore the anatomy of the plumbing system beneath an active volcanic complex, which notwithstanding the numerous existing works is still far to be well understood. A better knowledge of the heat source feeding geothermal systems is very important to improve geothermal exploration strategies.


2021 ◽  
Author(s):  
Stamatios Xydous ◽  
Ioannis Baziotis ◽  
Michael Bizimis ◽  
Stephan Klemme ◽  
Jasper Berndt ◽  
...  

<p>Over the last ~3 Ma, the volcanic complex of Milos Island has evolved from a shallow submarine into a subaerial edifice. It has erupted almost the entire range of calc-alkaline series compositions, but silicic units are volumetrically dominant (Fytikas et al., 1986; Stewart & McPhie, 2006). Although numerous studies have been published, data on the mineral record of the magmatic processes are absent. We examined amphiboles from 3 explosive and 4 effusive units, ranging from andesite to rhyolite, to gain insights into the structure and evolution of the plumbing system. Like many arc volcanoes worldwide, Milos products contain bimodal amphibole populations, often present within the same unit. Mg-hornblende (6.79-7.22 a.p.f.u. Si) forms macro-crysts (>600 μm; often partly decomposed) and crystal clots with plagioclase (An<sub>47-51</sub>), orthopyroxene (Wo<sub>1-2</sub>En<sub>61-62</sub>Fs<sub>37-38</sub>), and magnetite in the effusive units and phenocrysts (300-600 μm) in more evolved pumices. Mg-hastingsite occurs in effusive units as: (1) pristine micro-phenocrysts (<300 μm; 6.22-6.58 a.p.f.u. Si); (2) relics (6.22-6.46 a.p.f.u. Si) in the inner domains of pseudomorphs mostly replaced by coarse-grained orthopyroxene (Wo<sub>2</sub>En<sub>68</sub>Fs<sub>30</sub>) rimmed by clinopyroxene (Wo<sub>43</sub>En<sub>47</sub>Fs<sub>10</sub>), plagioclase (An<sub>47</sub>), and magnetite; and (3) framework-forming crystals in quenched enclaves; and (4) the only amphibole (6.29-6.59 a.p.f.u. Si) phenocrysts in andesitic scoria.</p><p>Temperature (T) and pressure (P) conditions were calculated by applying hornblende-plagioclase (Holland and Blundy, 1994) and amphibole composition (Ridolfi and Renzulli, 2012) thermo-barometers. Amphibole compositions and calculated P-T conditions are in good agreement with experimentally grown amphiboles. Mg-hornblende compositions and their petrographic context are consistent with cold storage (780±24°C) in a near-solidus, upper crustal (1.7-2.8 kbar) silicic mush. This scenario is further supported by the rhyolitic (74±3.6 wt.% SiO<sub>2</sub>) compositions of calculated melts in equilibrium with Mg-hornblende, in contrast with the less evolved bulk compositions of the host effusive units. Although the explosive eruptions likely originated from differentiated, crystal-poor melt pockets in the mush, the more common effusions of hybrid andesite-dacite magmas resulted from interaction between mafic recharge magma and the silicic mush. This interaction is preserved in the disequilibrium textures affecting both Mg-hornblendes and Mg-hastingsites, coupled with the growth of high-T (960-885°C) post-recharge Mg-hastingsite. Most of the recharge magmas in Milos are effectively dispersed, trapped, and hybridized in the upper crust, although in rare cases magmas from a deeper crustal storage region (T~960-885°C;P~3.8-5.1 kbar) erupted after limited interaction with the upper crustal storage system.</p><p>The mineral chemistry reveals that a large, shallow, silicic reservoir has been the dominant component of the Pliocene plumbing system beneath Milos. Magma inputs from deeper crustal sources are preserved in enclaves and volumetrically minor explosive products. The plumbing system of Milos shares similarities with other Aegean arc volcanoes, where magmas experience storage, differentiation, and assimilation in different crustal levels, like Methana (Popa et al., 2020).</p><p><strong>Acknowledgements</strong></p><p>The research work was supported by the Hellenic Foundation for Research and Innovation (HFRI) under the HFRI PhD Fellowship grant (Fellowship Number: 364).</p><p><strong>References</strong></p><p>Fytikas, M. et al. (1986). JVGR,28(3-4),297-317.</p><p>Holland, T., & Blundy, J. (1994).CTMP,116(4),433-447.</p><p>Popa, R.G. et al. (2020).JVGR, 106884.</p><p>Ridolfi, F., &Renzulli, A. (2012).CTMP,163(5),877-895.</p><p>Stewart, A.L., & McPhie, J. (2006).BulV,68(7-8),703-726.</p>


Sign in / Sign up

Export Citation Format

Share Document