Evaluation of the unsteady aerodynamic forces acting on a vertical-axis turbine by means of numerical simulations and open site experiments

2020 ◽  
Vol 198 ◽  
pp. 104093
Author(s):  
Minh Thao Nguyen ◽  
Francesco Balduzzi ◽  
Alessandro Bianchini ◽  
Giovanni Ferrara ◽  
Anders Goude
1990 ◽  
Author(s):  
Chih-Ming Ho ◽  
Ismet Gursul ◽  
Chiang Shih ◽  
Hank Lin ◽  
Mario Lee

2016 ◽  
Vol 179 ◽  
pp. 875-887 ◽  
Author(s):  
Min-Hsiung Yang ◽  
Guan-Ming Huang ◽  
Rong-Hua Yeh

2021 ◽  
Vol 11 (3) ◽  
pp. 1033
Author(s):  
Jia Guo ◽  
Timing Qu ◽  
Liping Lei

Pitch regulation plays a significant role in improving power performance and achieving output control in wind turbines. The present study focuses on a novel, pitch-regulated vertical axis wind turbine (VAWT) with inclined pitch axes. The effect of two pitch parameters (the fold angle and the incline angle) on the instantaneous aerodynamic forces and overall performance of a straight-bladed VAWT under a tip-speed ratio of 4 is investigated using an actuator line model, achieved in ANSYS Fluent software and validated by previous experimental results. The results demonstrate that the fold angle has an apparent influence on the angles of attack and forces of the blades, as well as the power output of the wind turbine. It is helpful to further study the dynamic pitch regulation and adaptable passive pitch regulation of VAWTs. Incline angles away from 90° lead to the asymmetric distribution of aerodynamic forces along the blade span, which results in an expected reduction of loads on the main shaft and the tower of VAWTs.


2020 ◽  
Vol 2020 (0) ◽  
pp. OS09-12
Author(s):  
Keisuke KITANO ◽  
Yasutaka HAYAMIZU ◽  
Takayuki SUZUKI ◽  
Shinichi MORITA ◽  
Shigeru OHTSUKA ◽  
...  

2021 ◽  
Vol 2021.59 (0) ◽  
pp. 07a5
Author(s):  
Keisuke KITANO ◽  
Yasutaka HAYAMIZU ◽  
Takayuki SUZUKI ◽  
Shigeru OHTSUKA ◽  
Shinichi MORITA ◽  
...  

2019 ◽  
pp. 29-55
Author(s):  
Grady Koch ◽  
Elias Koch

Author(s):  
Igor Zolotarev ◽  
Václav Vlček ◽  
Jan Kozánek

The study presents evaluation of optical measurements of the air flow field near the fluttering profile NACA0015 with two-degrees of freedom, Mach number of the flutter occurrence were M=0.21 and M=0.45. Aerodynamic forces (drag and lift components) were evaluated independently on the upper and lower surfaces of the profile. Using the mentioned decomposition, the new information about mechanism of flutter properties was obtained. The forces on the upper and lower surfaces are phase shifted and are partially eliminated as a result of the circulation around the profile. The cycle changes of these forces cause the permanent energy contribution from the airflow to the vibrating system.


2013 ◽  
Vol 47 (4) ◽  
pp. 36-44 ◽  
Author(s):  
Prasun Chatterjee ◽  
Raymond N. Laoulache

AbstractVertical axis turbines (VATs) excel over horizontal axis turbines in their independent flow direction. VATs that operate in an enclosure, e.g., a diffuser shroud, are reported to generate more power than unducted VATs. A diffuser-shrouded, high solidity of 36.67%, three-blade VAT with NACA 633-018 airfoil section is modeled in 2-D using the commercial software ANSYS-FLUENT®. Incompressible, unsteady, segregated, implicit, and second order in time and space solver is implemented in association with the Spalart-Allmaras turbulent model with a reasonable computational cost. The computational results are assessed against experimental data for unducted VAT at low tip speed ratios between 1 and 2 for further numerical analysis on diffuser models. Different diffuser designs are investigated using suitable nozzle size, area ratio, length-to-diameter ratio and angles between the diffuser inner surfaces. The numerical model shows that, for a specific diffuser design, the ducted VAT performance coefficient can be augmented by almost 90% over its unducted counterpart.


Sign in / Sign up

Export Citation Format

Share Document