scholarly journals Design of large-scale streamlined head cars of high-speed trains and aerodynamic drag calculation

2017 ◽  
Vol 44 (4) ◽  
pp. 89-97 ◽  
Author(s):  
Zhenfeng Wu ◽  
Enyu Yang ◽  
Wangcai Ding

Aerodynamic drag plays an important role in high-speed trains, and how to reduce the aerodynamic drag is one of the most important research subjects related to modern railway systems. This paper investigates a design method for large-scale streamlined head cars of high-speed trains by adopting NURBS theory according to the outer surface characteristics of trains. This method first created the main control lines of the driver cab by inputting control point coordinates; then, auxiliary control lines were added to the main ones. Finally, the reticular region formed by the main control lines and auxiliary ones were filled. The head car was assembled with the driver cab and sightseeing car in a virtual environment. The numerical simulation of train flow field was completed through definition of geometric models, boundary conditions, and space discretization. The calculation results show that the aerodynamic drag of the high-speed train with large-scale streamlined head car decreases by approximately 49.3% within the 50-300 km/h speed range compared with that of the quasi-streamlined high-speed train. This study reveals that the high-speed train with large-scale streamlined head car could achieve the purpose of reducing running aerodynamic drag and saving energy, and aims to provide technical support for the subsequent process design and production control of high-speed train head cars.

Author(s):  
Benhuai Li ◽  
Zhaijun Lu ◽  
Kaibo Yan ◽  
Sisi Lu ◽  
Lingxiang Kong ◽  
...  

Aluminium honeycomb is a light weight, thin-walled material with a typical multi-cellular construction and a good strength-to-weight ratio. Therefore, aluminium honeycomb can be used as an energy-absorbing device for high-speed trains. Due to its large mass and high operating speed, a high-speed train can generate large impact energy. Thus, an energy-absorbing device with a greater energy absorption capability must be designed for high-speed trains. To reduce the aerodynamic drag, the cross-sectional area of a high-speed train is limited. Therefore, a honeycomb energy-absorbing device should be designed in such a way that it is longer than the traditional energy-absorbing devices; however, this may lead to bending, destruction and uncontrollable deformation of the honeycomb; these factors are not conducive for energy absorption. In this paper, a sleeve structure was designed for high-speed trains, and a crash experiment of the energy-absorbing structure showed that the bending and destruction of the honeycomb energy-absorbing device are effectively suppressed compared with the ordinary honeycomb energy-absorbing structure. Moreover, the fluctuation of the crash force was smaller and the crash force is more stable than the traditional thin-walled energy-absorbing structure. Therefore, the deformation instability problem of the ordinary honeycomb energy-absorbing structure and the crash force fluctuation problem of the traditional thin-walled energy-absorbing structure can be solved. Then, a crash experiment and simulation involving a high-speed train with improved honeycomb energy-absorbing device was carried out, and the results showed that the deformation of the end of the train body was stable and controllable, and the train body deceleration satisfied the collision standard EN15227.


Author(s):  
Rui Li ◽  
Ping Xu ◽  
Shuguang Yao

Aerodynamic drag reduction is one of the most important issues in the development of high-speed trains. This study focused on the aerodynamic optimization of the train by modifying the shape of the head car and tail car. Three shape parameters were studied in this paper: the angle of cab-window, nose-length, and nose-width of the train. The effects of shape parameters on the aerodynamic drag coefficients of the head car and tail car were discussed, respectively. It can be concluded that the flat surface of the window region, long and sharp nose are the distinguishing characters of a high-speed train with low resistance. Response surface models of the shape parameters and the aerodynamic drag of the head car and tail car were obtained, respectively. Based on these models, an aerodynamic optimization was performed to achieve the optimal shape. As a result, the total aerodynamic drag of the optimal train decreased by 2.05% compared with the original value.


2021 ◽  
Author(s):  
Zhixiang Huang ◽  
Hanjie Huang ◽  
Weiping Zeng ◽  
Li Chen ◽  
Renyu Zhu

Abstract The influences of vestibule diaphragm gap, wheel-rail clearance, and strut-plate gap on the aerodynamic drag of a 1/8th-scale high-speed train model were investigated in an 8 m×6 m wind tunnel. The Reynolds number was set to 2.2×106 based on train height. It was found that the variation of the vestibule diaphragm gap changed the aerodynamic drag distribution pattern of each car; the drag coefficient of the head and middle cars might change as high as 45%; however, the change in the drag coefficient of the total train was very small. The effects of the strut-plate gap on the aerodynamic drag of each car and the total train were small. The effect of the wheel-rail clearance on the drag of the head car was not significant. It was suggested that the vestibule diaphragm gap, strut-plate gap and wheel-rail clearance of the 1:8 scale high-speed train model should not be greater than 11, 10, and 9 mm, respectively.


2021 ◽  
pp. 147592172110360
Author(s):  
Dongming Hou ◽  
Hongyuan Qi ◽  
Honglin Luo ◽  
Cuiping Wang ◽  
Jiangtian Yang

A wheel set bearing is an important supporting component of a high-speed train. Its quality and performance directly determine the overall safety of the train. Therefore, monitoring a wheel set bearing’s conditions for an early fault diagnosis is vital to ensure the safe operation of high-speed trains. However, the collected signals are often contaminated by environmental noise, transmission path, and signal attenuation because of the complexity of high-speed train systems and poor operation conditions, making it difficult to extract the early fault features of the wheel set bearing accurately. Vibration monitoring is most widely used for bearing fault diagnosis, with the acoustic emission (AE) technology emerging as a powerful tool. This article reports a comparison between vibration and AE technology in terms of their applicability for diagnosing naturally degraded wheel set bearings. In addition, a novel fault diagnosis method based on the optimized maximum second-order cyclostationarity blind deconvolution (CYCBD) and chirp Z-transform (CZT) is proposed to diagnose early composite fault defects in a wheel set bearing. The optimization CYCBD is adopted to enhance the fault-induced impact response and eliminate the interference of environmental noise, transmission path, and signal attenuation. CZT is used to improve the frequency resolution and match the fault features accurately under a limited data length condition. Moreover, the efficiency of the proposed method is verified by the simulated bearing signal and the real datasets. The results show that the proposed method is effective in the detection of wheel set bearing faults compared with the minimum entropy deconvolution (MED) and maximum correlated kurtosis deconvolution (MCKD) methods. This research is also the first to compare the effectiveness of applying AE and vibration technologies to diagnose a naturally degraded high-speed train bearing, particularly close to actual line operation conditions.


2017 ◽  
Vol 28 (10) ◽  
pp. 1750126 ◽  
Author(s):  
Yutong Liu ◽  
Chengxuan Cao ◽  
Yaling Zhou ◽  
Ziyan Feng

In this paper, an improved real-time control model based on the discrete-time method is constructed to control and simulate the movement of high-speed trains on large-scale rail network. The constraints of acceleration and deceleration are introduced in this model, and a more reasonable definition of the minimal headway is also presented. Considering the complicated rail traffic environment in practice, we propose a set of sound operational strategies to excellently control traffic flow on rail network under various conditions. Several simulation experiments with different parameter combinations are conducted to verify the effectiveness of the control simulation method. The experimental results are similar to realistic environment and some characteristics of rail traffic flow are also investigated, especially the impact of stochastic disturbances and the minimal headway on the rail traffic flow on large-scale rail network, which can better assist dispatchers in analysis and decision-making. Meanwhile, experimental results also demonstrate that the proposed control simulation method can be in real-time control of traffic flow for high-speed trains not only on the simple rail line, but also on the complicated large-scale network such as China’s high-speed rail network and serve as a tool of simulating the traffic flow on large-scale rail network to study the characteristics of rail traffic flow.


Micromachines ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 830
Author(s):  
Jaehoon Kim

Durability is a critical issue concerning energy-harvesting devices. Despite the energy-harvesting device’s excellent performance, moving components, such as the metal spring, can be damaged during operation. To solve the durability problem of the metal spring in a vibration-energy-harvesting (VEH) device, this study applied a non-contact magnetic spring to a VEH device using the repulsive force of permanent magnets. A laboratory experiment was conducted to determine the potential energy-harvesting power using the magnetic spring VEH device. In addition, the characteristics of the generated power were studied using the magnetic spring VEH device in a high-speed train traveling at 300 km/h. Through the high-speed train experiment, the power generated by both the metal spring VEH device and magnetic spring VEH device was measured, and the performance characteristics required for a power source for wireless sensor nodes in high-speed trains are discussed.


2021 ◽  
Vol 215 ◽  
pp. 104698
Author(s):  
Xiao-Bai Li ◽  
Xi-Feng Liang ◽  
Zhe Wang ◽  
Xiao-Hui Xiong ◽  
Guang Chen ◽  
...  

Author(s):  
Diana Khairallah ◽  
Olivier Chupin ◽  
Juliette Blanc ◽  
Pierre Hornych ◽  
Jean-Michel Piau ◽  
...  

The design and durability of high-speed railway lines is a major challenge in the field of railway transportation. In France, 40 years of feedback on the field behavior of ballasted tracks led to improvements in the design rules. However, the settlement and wear of ballast, caused by dynamic stresses at high frequencies, remains a major problem on high-speed tracks leading to high maintenance costs. Studies have shown that this settlement is linked to the high acceleration produced in the ballast layer by high-speed trains traveling on the track, disrupting the granular assembly. The “Bretagne–Pays de la Loire” high-speed line (BPL HSL), with its varied subgrade conditions, represents the first large-scale application of asphalt concrete (GB) as the ballast sublayer. This line includes 77 km of conventional track with a granular sublayer of unbound granular material (UGM) and 105 km of track with an asphalt concrete sublayer under the ballast. During construction, instruments such as accelerometers, anchored deflection sensors, and strain gages, among others, were installed on four sections of the track. This paper examines the instrumentation as well as the acquisition system installed on the track. The data processing is explained first, followed by a presentation of the ViscoRail software, developed for modeling railway tracks. The bituminous section’s behavior and response is modeled using a multilayer dynamic response model, implemented in the ViscoRail software. A good match between experimental and calculated results is highlighted.


Author(s):  
Dilong Guo ◽  
Wen Liu ◽  
Junhao Song ◽  
Ye Zhang ◽  
Guowei Yang

The aerodynamic force acting on the pantograph by the airflow is obviously unsteady and has a certain vibration frequency and amplitude, while the high-speed train passes through the tunnel. In addition to the unsteady behavior in the open-air operation, the compressive and expansion waves in the tunnel will be generated due to the influence of the blocking ratio. The propagation of the compression and expansion waves in the tunnel will affect the pantograph pressure distribution and cause the pantograph stress state to change significantly, which affects the current characteristics of the pantograph. In this paper, the aerodynamic force of the pantograph is studied with the method of the IDDES combined with overset grid technique when high speed train passes through the tunnel. The results show that the aerodynamic force of the pantograph is subjected to violent oscillations when the pantograph passes through the tunnel, especially at the entrance of the tunnel, the exit of the tunnel and the expansion wave passing through the pantograph. The changes of the pantograph aerodynamic force can reach a maximum amplitude of 106%. When high-speed trains pass through tunnels at different speeds, the aerodynamic coefficients of the pantographs are roughly the same.


2014 ◽  
Vol 629 ◽  
pp. 426-430
Author(s):  
Sufiah Mohd Salleh ◽  
Mohamed Sukri Mat Ali ◽  
Sheikh Ahmad Zaki Shaikh Salim ◽  
Sallehuddin Muhamad ◽  
Muhammad Iyas Mahzan

Flow structure over bluff bodies is more complex in wake. The wake is characterized by the unsteady behavior of the flow, large scale turbulent structure and strong recirculation region. For the case of high speed train, wake can be observed at the gap between the coaches and also on the rear coach. Wakes formation of high speed train are generated by free shear layer that is originated from the flow separation due to the sudden change in geometry. RANS and LES turbulent models are used in this paper to stimulate the formation of wakes and behavior of the flow over a simplified high speed train model. This model consists of two coaches with the gap between them is 0.5D. A total of four simulations have been made to study the effect of computational domain size and grid resolution on wake profiles of a simplified high speed train. The result shows that the computational domain can be reduced by decreasing the ground distance to 1.5D without affecting the magnitude of the wake profile. Both RANS and LES can capture the formation of the wake, but LES requires further grid refinement as the results between the two grid resolutions are grid dependent.


Sign in / Sign up

Export Citation Format

Share Document