Oxidative degradation of Acid Blue 111 by electro-assisted Fenton process

2020 ◽  
Vol 36 ◽  
pp. 101394 ◽  
Author(s):  
Stevan Lj. Stupar ◽  
Branimir N. Grgur ◽  
Marina M. Radišić ◽  
Antonije E. Onjia ◽  
Negovan D. Ivanković ◽  
...  
2010 ◽  
Vol 9 (1) ◽  
pp. 1-5 ◽  
Author(s):  
Ion Untea ◽  
Cristina Orbeci ◽  
Madelene Dancila ◽  
Daniela Simina Stefan

2017 ◽  
Vol 186 ◽  
pp. 197-206 ◽  
Author(s):  
Pape Abdoulaye Diaw ◽  
Nihal Oturan ◽  
Mame Diabou Gaye Seye ◽  
Atanasse Coly ◽  
Alponse Tine ◽  
...  

2016 ◽  
Vol 75 (1) ◽  
pp. 11-19 ◽  
Author(s):  
Shunwu Wang ◽  
Ziwang Li ◽  
Qinglong Yu

Guar gum is considered as a main component of oilfield wastewater. This work is intended to optimize the experimental conditions (H2O2 dosage, Fe2+ dosage, initial concentration of organics, initial pH and temperature) for the maximum oxidative degradation of guar gum by Fenton's reagent. The kinetics of guar gum removal were evaluated by means of the chemical oxygen demand (COD) and the absorbance measurements. The batch experiment results showed that the optimum conditions were: H2O2 dosage, 10,000 mg/L; Fe2+dosage, 2,000 mg/L; initial concentration of organics, 413 mg/L; pH, 3 and temperature, 35 °C, under which the COD removal could reach 61.07% and fairly good stability could be obtained. Under the optimum experimental conditions, using UV irradiation to treat the wastewater, the photo-Fenton systems can successfully eliminate COD from guar gum solution. The COD removal always obeyed a pseudo-first-order kinetics and the degradation rate (kapp) was increased by 25.7% in the photo-Fenton process compared to the Fenton process. The photo-Fenton system needed less time and consequently less quantity of H2O2 to obtain the same results as the Fenton process. The photo-Fenton process needs a dose of H2O2 20.46% lower than that used in the Fenton process to remove 79.54% of COD. The cost of the photo/Fenton process amounted to RMB9.43/m3, which was lower than that of the classic Fenton process alone (RMB10.58/m3) and the overall water quality of the final effluent could meet the class Ι national wastewater discharge standard for the petrochemical industry of China.


Sign in / Sign up

Export Citation Format

Share Document