phenylurea herbicide
Recently Published Documents


TOTAL DOCUMENTS

44
(FIVE YEARS 6)

H-INDEX

19
(FIVE YEARS 2)

2021 ◽  
Vol 12 ◽  
Author(s):  
Jiayi Li ◽  
Wenping Zhang ◽  
Ziqiu Lin ◽  
Yaohua Huang ◽  
Pankaj Bhatt ◽  
...  

Diuron (DUR) is a phenylurea herbicide widely used for the effective control of most annual and perennial weeds in farming areas. The extensive use of DUR has led to its widespread presence in soil, sediment, and aquatic environments, which poses a threat to non-target crops, animals, humans, and ecosystems. Therefore, the removal of DUR from contaminated environments has been a hot topic for researchers in recent decades. Bioremediation seldom leaves harmful intermediate metabolites and is emerging as the most effective and eco-friendly strategy for removing DUR from the environment. Microorganisms, such as bacteria, fungi, and actinomycetes, can use DUR as their sole source of carbon. Some of them have been isolated, including organisms from the bacterial genera Arthrobacter, Bacillus, Vagococcus, Burkholderia, Micrococcus, Stenotrophomonas, and Pseudomonas and fungal genera Aspergillus, Pycnoporus, Pluteus, Trametes, Neurospora, Cunninghamella, and Mortierella. A number of studies have investigated the toxicity and fate of DUR, its degradation pathways and metabolites, and DUR-degrading hydrolases and related genes. However, few reviews have focused on the microbial degradation and biochemical mechanisms of DUR. The common microbial degradation pathway for DUR is via transformation to 3,4-dichloroaniline, which is then metabolized through two different metabolic pathways: dehalogenation and hydroxylation, the products of which are further degraded via cooperative metabolism. Microbial degradation hydrolases, including PuhA, PuhB, LibA, HylA, Phh, Mhh, and LahB, provide new knowledge about the underlying pathways governing DUR metabolism. The present review summarizes the state-of-the-art knowledge regarding (1) the environmental occurrence and toxicity of DUR, (2) newly isolated and identified DUR-degrading microbes and their enzymes/genes, and (3) the bioremediation of DUR in soil and water environments. This review further updates the recent knowledge on bioremediation strategies with a focus on the metabolic pathways and molecular mechanisms involved in the bioremediation of DUR.


2020 ◽  
Vol 81 ◽  
pp. 106917
Author(s):  
Sapna Maharaj ◽  
Nader El Ahmadie ◽  
Spencer Rheingold ◽  
Jana El Chehouri ◽  
Lihua Yang ◽  
...  

2020 ◽  
Vol 12 (6) ◽  
pp. 827-841 ◽  
Author(s):  
Başak Öztürk ◽  
Johannes Werner ◽  
Jan P Meier-Kolthoff ◽  
Boyke Bunk ◽  
Cathrin Spröer ◽  
...  

Abstract Biodegradation of the phenylurea herbicide linuron appears a specialization within a specific clade of the Variovorax genus. The linuron catabolic ability is likely acquired by horizontal gene transfer but the mechanisms involved are not known. The full-genome sequences of six linuron-degrading Variovorax strains isolated from geographically distant locations were analyzed to acquire insight into the mechanisms of genetic adaptation toward linuron metabolism. Whole-genome sequence analysis confirmed the phylogenetic position of the linuron degraders in a separate clade within Variovorax and indicated that they unlikely originate from a common ancestral linuron degrader. The linuron degraders differentiated from Variovorax strains that do not degrade linuron by the presence of multiple plasmids of 20–839 kb, including plasmids of unknown plasmid groups. The linuron catabolic gene clusters showed 1) high conservation and synteny and 2) strain-dependent distribution among the different plasmids. Most of them were bordered by IS1071 elements forming composite transposon structures, often in a multimeric array configuration, appointing IS1071 as a key element in the recruitment of linuron catabolic genes in Variovorax. Most of the strains carried at least one (catabolic) broad host range plasmid that might have been a second instrument for catabolic gene acquisition. We conclude that clade 1 Variovorax strains, despite their different geographical origin, made use of a limited genetic repertoire regarding both catabolic functions and vehicles to acquire linuron biodegradation.


2019 ◽  
Author(s):  
Başak Öztürk ◽  
Johannes Werner ◽  
Jan P. Meier-Kolthoff ◽  
Boyke Bunk ◽  
Cathrin Spröer ◽  
...  

AbstractBiodegradation of the phenylurea herbicide linuron appears a specialization within a specific clade of the Variovorax genus. The linuron catabolic ability is likely acquired by horizontal gene transfer but the mechanisms involved are not known. The full genome sequences of six linuron degrading Variovorax strains isolated from geographically distant locations were analyzed to acquire insight in the mechanisms of genetic adaptation towards linuron metabolism in Variovorax. Whole genome sequence analysis confirmed the phylogenetic position of the linuron degraders in a separate clade within Variovorax and indicated their unlikely origin from a common ancestral linuron degrader. The linuron degraders differentiated from non-degraders by the presence of multiple plasmids of 20 to 839 kb, including plasmids of unknown plasmid groups. The linuron catabolic gene clusters showed (i) high conservation and synteny and (ii) strain-dependent distribution among the different plasmids. All were bordered by IS1071 elements forming composite transposon structures appointing IS1071 as key for catabolic gene recruitment. Most of the strain carried at least one broad host range plasmid that might have been a second instrument for catabolic gene acquisition. We conclude that clade 1Variovorax strains, despite their different geographical origin, made use of a limited genetic repertoire to acquire linuron biodegradation.ImportanceThe genus Variovorax and especially a clade of strains that phylogenetically separates from the majority of Variovorax species, appears to be a specialist in the biodegradation of the phenyl urea herbicide linuron. Horizontal gene transfer (HGT) likely played an essential role in the genetic adaptation of those strain to acquire the linuron catabolic genotype. However, we do not know the genetic repertoire involved in this adaptation both regarding catabolic gene functions as well as gene functions that promote HGT neither do we know how this varies between the different strains. These questions are addressed in this paper by analyzing the full genome sequences of six linuron degrading Variovorax strains. This knowledge is important for understanding the mechanisms that steer world-wide genetic adaptation in a particular species and this for a particular phenotypic trait as linuron biodegradation.


2017 ◽  
Vol 186 ◽  
pp. 197-206 ◽  
Author(s):  
Pape Abdoulaye Diaw ◽  
Nihal Oturan ◽  
Mame Diabou Gaye Seye ◽  
Atanasse Coly ◽  
Alponse Tine ◽  
...  

2017 ◽  
Vol 227 ◽  
pp. 389-396 ◽  
Author(s):  
Yuan Qian ◽  
Haruna Matsumoto ◽  
Xiaoyu Liu ◽  
Shuying Li ◽  
Xiao Liang ◽  
...  

2015 ◽  
Vol 71 (8) ◽  
pp. o589-o589
Author(s):  
Gihaeng Kang ◽  
Jineun Kim ◽  
Eunjin Kwon ◽  
Tae Ho Kim

The title compound [systematic name: 3-(4-bromophenyl)-1-methoxy-1-methylurea], C9H11BrN2O2, is a phenylurea herbicide. The dihedral angle between the plane of the urea group and that of the bromophenyl ring is 39.13 (10)°. In the crystal, N—H...O and C—H...O hydrogen bonds and weak C—H...π interactions link adjacent molecules, forming chains along thea-axis direction. In addition, short intermolecular Br...Br contacts [3.648 (4) Å] are present, resulting in a two-dimensional network extending parallel to (101).


Sign in / Sign up

Export Citation Format

Share Document