Kinetic degradation of guar gum in oilfield wastewater by photo-Fenton process

2016 ◽  
Vol 75 (1) ◽  
pp. 11-19 ◽  
Author(s):  
Shunwu Wang ◽  
Ziwang Li ◽  
Qinglong Yu

Guar gum is considered as a main component of oilfield wastewater. This work is intended to optimize the experimental conditions (H2O2 dosage, Fe2+ dosage, initial concentration of organics, initial pH and temperature) for the maximum oxidative degradation of guar gum by Fenton's reagent. The kinetics of guar gum removal were evaluated by means of the chemical oxygen demand (COD) and the absorbance measurements. The batch experiment results showed that the optimum conditions were: H2O2 dosage, 10,000 mg/L; Fe2+dosage, 2,000 mg/L; initial concentration of organics, 413 mg/L; pH, 3 and temperature, 35 °C, under which the COD removal could reach 61.07% and fairly good stability could be obtained. Under the optimum experimental conditions, using UV irradiation to treat the wastewater, the photo-Fenton systems can successfully eliminate COD from guar gum solution. The COD removal always obeyed a pseudo-first-order kinetics and the degradation rate (kapp) was increased by 25.7% in the photo-Fenton process compared to the Fenton process. The photo-Fenton system needed less time and consequently less quantity of H2O2 to obtain the same results as the Fenton process. The photo-Fenton process needs a dose of H2O2 20.46% lower than that used in the Fenton process to remove 79.54% of COD. The cost of the photo/Fenton process amounted to RMB9.43/m3, which was lower than that of the classic Fenton process alone (RMB10.58/m3) and the overall water quality of the final effluent could meet the class Ι national wastewater discharge standard for the petrochemical industry of China.

2011 ◽  
Vol 64 (12) ◽  
pp. 2433-2438 ◽  
Author(s):  
B. Manu ◽  
S. Mahamood

For the treatment of paracetamol in water, the UV-C Fenton oxidation process and classic Fenton oxidation have been found to be the most effective. Paracetamol reduction and chemical oxygen demand (COD) removal are measured as the objective functions to be maximized. The experimental conditions of the degradation of paracetamol are optimized by the Fenton process. Influent pH 3, initial H2O2 dosage 60 mg/L, [H2O2]/[Fe2+] ratio 60 : 1 are the optimum conditions observed for 20 mg/L initial paracetamol concentration. At the optimum conditions, for 20 mg/L of initial paracetamol concentration, 82% paracetamol reduction and 68% COD removal by Fenton oxidation, and 91% paracetamol reduction and 82% COD removal by UV-C Fenton process are observed in a 120 min reaction time. By HPLC analysis, 100% removal of paracetamol is observed at the above optimum conditions for the Fenton process in 240 min and for the UV-C photo-Fenton process in 120 min. The methods are effective and they may be used in the paracetamol industry.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Gong Cheng ◽  
Jing Lin ◽  
Jian Lu ◽  
Xi Zhao ◽  
Zhengqing Cai ◽  
...  

The photo-Fenton reaction is a promising method to treat organic contaminants in water. In this paper, a Fenton reagent enhanced by microwave electrodeless ultraviolet (MWEUV/Fenton) method was proposed for advanced treatment of nonbiodegradable organic substance in pesticide-containing biotreated wastewater. MWEUV lamp was found to be more effective for chemical oxygen demand (COD) removal than commercial mercury lamps in the Fenton process. The pseudo-first order kinetic model can well describe COD removal from pesticide-containing wastewater by MWEUV/Fenton, and the apparent rate constant (k) was 0.0125 min−1. The optimal conditions for MWEUV/Fenton process were determined as initial pH of 5, Fe2+dosage of 0.8 mmol/L, and H2O2dosage of 100 mmol/L. Under the optimal conditions, the reaction exhibited high mineralization degrees of organics, where COD and dissolved organic carbon (DOC) concentration decreased from 183.2 mg/L to 36.9 mg/L and 43.5 mg/L to 27.8 mg/L, respectively. Three main pesticides in the wastewater, as Dimethoate, Triazophos, and Malathion, were completely removed by the MWEUV/Fenton process within 120 min. The high degree of pesticides decomposition and mineralization was proved by the detected inorganic anions.


2017 ◽  
Vol 75 (6) ◽  
pp. 1431-1439 ◽  
Author(s):  
Min Xu ◽  
Changyong Wu ◽  
Yuexi Zhou

The Fenton process was used to treat petrochemical secondary effluent. The effects of initial pH, H2O2, and FeSO4·7H2O dosages on chemical oxygen demand (COD) removal, the dissolved organic matter (DOM) removal and the transformation and migration of typical organic matters during the treatment process were investigated. The results showed that the optimum conditions were initial pH of 3.0, H2O2 (30%) dosage of 0.4 mL/L, and FeSO4·7H2O dosage of 1.0 g/L. The highest COD removal efficiency of 61.9% could be achieved for this condition when the average influent COD was 78.5 mg/L. Most of the DOM in the petrochemical wastewater could be removed effectively by Fenton through direct oxidation and coagulation. For example, for trans-1,2-dichlorocyclopentane, results showed that 56.3% of it could be removed by Fenton oxidation, while 13.3% of it could be absorbed by the in situ generated Fenton chemical sludge. The Fenton process is simple and it is suitable for the advanced treatment of petrochemical secondary effluent.


2015 ◽  
Vol 73 (2) ◽  
pp. 260-266 ◽  
Author(s):  
F. G. Zha ◽  
D. X. Yao ◽  
Y. B. Hu ◽  
L. M. Gao ◽  
X. M. Wang

The landfill leachate treated by sonication in presence of Fe2+ (US/Fe2+) and then by photo-Fenton achieved the highest total organic carbon (TOC) removal efficiency among the screened processes. The lower initial pH, dosage of Fe2+ and initial concentration of leachate were helpful in raising TOC removal efficiency of leachate by US/Fe2+. The optimal conditions for the US-photo-Fenton process were as follows: initial pH at 3.0, [H2O2]/[TOC0] at 2, [H2O2]/[Fe2+] at 5 and initial concentration of landfill leachate at 600 mg/L. The removal efficiency of TOC, chemical oxygen demand (COD) and 5-day biochemical oxygen demand (BOD5) were 68.3, 79.6 and 58.2%, while the BOD5/COD rose from 0.20 to 0.43 at optimum condition. Based on gas chromatography–mass spectrometry (GC-MS) results, 36 of a total of 56 pollutants were completely degraded by US-photo-Fenton treatment.


2017 ◽  
Vol 23 (2) ◽  
pp. 177-186 ◽  
Author(s):  
Gamze Dalgic ◽  
Ilter Turkdogan ◽  
Kaan Yetilmezsoy ◽  
Emel Kocak

The study investigated the pretreatment of real paracetamol (PCT) wastewater of a pharmaceutical industry by Fenton process. At the best experimental conditions (COD/H2O2 = 1/1, Fe+2/H2O2 = 1/70, settling method:centrifuging, pH 6 at settling step), 92.7, 92.7, 95.5, 99.1, 99.9 and 99.4% of chemical oxygen demand (COD), total organic carbon (TOC), 5-day biological oxygen demand (BOD5), PCT, para-amino phenol (PAP) and aniline were removed, respectively. Changes in the concentrations of these parameters were also investigated for both oxidation and settling steps of Fenton process. It was found that COD and TOC were removed at the settling step (precipitation) whereas PCT, PAP and aniline were removed at the oxidation step. Mass balance calculations were also studied to show the mass distributions of COD in different phases (gas + foam, effluent and sludge). Fenton process was found as an effective method for the pretreatment of real PCT wastewater for discharging in a determined collective treatment plant.


2015 ◽  
Vol 50 (4) ◽  
pp. 349-358
Author(s):  
Lekshmi Ashok ◽  
S. Adishkumar ◽  
J. Rajesh Banu ◽  
Ick Tae Yeom

This study evaluated a ferrioxalate-induced solar photo-Fenton process for natural rubber latex wastewater treatment. The reaction was carried out in a laboratory-scale solar photo-Fenton plug flow baffle reactor. An optimization study was performed using a central composite experimental design including the following variables: pH, initial concentrations of H2O2, Fe2+, and oxalic acid. The photocatalytic degradation efficiency was determined by the analysis of chemical oxygen demand (COD) removal. Under the optimum conditions of pH = 4, Fe2+ = 1.3 g/L, oxalic acid = 2.25 g/L, H2O2 = 82.5 g/L, and solar irradiation time of 6 hours, the COD removal efficiency was 99%. Treatment of latex wastewater by ferrioxalate-induced solar photo-Fenton process increased biodegradability ratio from 0.36 to 0.7 in 2 hours. The overall cost of ferrioxalate-induced solar photo-Fenton oxidation for the treatment of 5 m3 of latex wastewater per day was estimated to be US$85/m3.


2021 ◽  
Vol 11 (2) ◽  
pp. 172
Author(s):  
Thiery Auguste Foffié Appia ◽  
Lassiné Ouattara

<p>The electrooxidation of amoxicillin (AMX) on the iridium oxide electrode thermally prepared (400°C) has been investigated by cyclic voltammetry and preparative electrolysis. Physical characterization by Scanning Electron Microscopy (SEM) showed that the IrO<sub>2</sub> electrode has a rough surface with pores' presence. In cyclic voltammetry, the oxidation of AMX occurs directly at the anode's surface or via the higher degree oxide of iridium oxide (IrO<sub>3</sub>).  It is noted that the oxidation process of AMX can be controlled by diffusion combined with the phenomenon of adsorption. In preparative electrolysis, the effect of several parameters has been investigated. These are the current density, the support medium, the initial pH. The findings obtained show a weak degradation of amoxicillin. The Chemical Oxygen Demand (COD) reduction rate is less than 11% under our experimental conditions, indicating that the IrO2 electrode leads to the parent compound's conversion. Also, the degradation of the organic compound is favored in a very acidic medium.<strong></strong></p><p>Furthermore, the effect of inorganic ions such as SO<sub>4</sub><sup>2-</sup>, PO<sub>4</sub><sup>3-</sup>, NO<sub>3</sub><sup>-</sup>, Cl<sup>-</sup> was evaluated. Investigations show that these ions' effects are diverse, with COD reduction rates ranging from 2.47%; 2.68%; 7.7%; 16.41%, and 71.65%, respectively, in the absence and the presence of SO<sub>4</sub><sup>2-</sup>, PO<sub>4</sub><sup>3-</sup>, NO<sub>3</sub><sup>-</sup>, Cl<sup>- </sup>ions. SO<sub>4</sub><sup>2-</sup> have virtually no effect on enhancing the degradation of amoxicillin. PO<sub>4</sub><sup>3-</sup> ions provide a slight improvement in amoxicillin degradation. As for nitrate ions, their influence is 2.31 times that of phosphate ions. Chloride ions improve the performance of the electrooxidation of amoxicillin on IrO2 very significantly. The presence of chloride ions makes it possible to go from 2928.35 (absence of inorganic ions) to 33.19 kWh per Kg of COD. This represents an energy gain of over 98%.</p>


2017 ◽  
Vol 33 (1) ◽  
pp. 10 ◽  
Author(s):  
T.H. Dang ◽  
T.P. Mai ◽  
M.T. Truong ◽  
L.T Dao ◽  
T.A.N Nguyen

In this study, the photochemical degradation via photo-Fenton process was carried out to degrade dyes in textile industrial wastewaters. Experimental design methodology was also applied for optimizing effects of factors which influencethe effective treatment such as ferric dose, hydroperoxide dosage, initial pH, reaction time and initial chemical oxygen demand (COD). Two independent variables namely colour and COD removal efficiencieswere used to evaluate the treatment yield. Under the optimal conditions, ca. 99%  and ca. 88%, colour, and COD were removed, respectively.


2019 ◽  
Vol 9 (3) ◽  
pp. 212-221
Author(s):  
Fatima Erraib ◽  
Khalid El Ass

Box–Behnken response surface design was successfully employed to optimize and study the olive mill wastewater (OMW) treatment by electrocoagulation (EC) process. The influence of four decisive factors were modelled and optimized to increase the removal of chemical oxygen demand (COD). The Box–Behnken design (BBD) results were analyzed and the second-order polynomial model was developed using multiple regression analysis. The model developed from the experimental design was predictive and a good fit with the experimental data with a high coefficient of determination (R2 ) value (more than 0.98). The optimal operating conditions based on Derringer’s desired function methodology are found to be; initial pH of 4.4, a current density of 27.6 mA/cm2 , electrolysis time of 14.1 min, and chloride concentration of 3.2 g/L. Under these conditions, the predicted COD removal efficiency was found to be 67.14% with a desirability value of 0.94. These experimental results were confirmed by validation experiments and proved that Box–Behnken design and response surface methodology could efficiently be applied for modelling of COD removal from OMW.


2017 ◽  
Vol 76 (10) ◽  
pp. 2655-2663 ◽  
Author(s):  
Xian-Qing Yin ◽  
Bo Jing ◽  
Wen-Juan Chen ◽  
Jian Zhang ◽  
Qian Liu ◽  
...  

Abstract The chemical oxygen demand (COD) removal mechanism and reaction kinetics were mainly studied in the treatment of oilfield oily sewage containing polymer by three-dimensional electrode reactor. The results proved that the residual active oxides O3, H2O2, •OH and active chlorine in the system of electrochemical reaction could be effectively detected, and the COD removal mechanism was co-oxidation of active oxides; Under these experimental conditions: the electrolysis current of 6 A, surface/volume ratio of 6/25(cm2·L−1), the reaction time of 50 min, the CODcr of treated sewage was no more than 50 mg·L−1; the removal reaction of COD conformed to apparent second-order reaction kinetic model, the correlation coefficient R2 was 0.9728, and the apparent reaction rate constant was k = 3.58 × 10−4 (L·min−1·mg−1·m−2). To reach the goal, the CODcr was no more than 50 mg·L−1 in treated sewage, and the theory minimum processing time was 45.73 min. The verification of experimental results was consistent with kinetic equations.


Sign in / Sign up

Export Citation Format

Share Document