scholarly journals Effectiveness of solar water disinfection in the era of COVID-19 (SARS-CoV-2) pandemic for contaminated water/wastewater treatment considering UV effect and temperature

Author(s):  
Seyed Masoud Parsa ◽  
Saba Momeni ◽  
Ahmad Reza Hemmat ◽  
Masoud Afrand
2011 ◽  
Vol 63 (6) ◽  
pp. 1130-1136 ◽  
Author(s):  
J. M. Carey ◽  
T. M. Perez ◽  
E. G. Arsiaga ◽  
L. H. Loetscher ◽  
J. E. Boyd

The solar water disinfection method (SODIS) was modified by the addition of a photocatalytic layer of titania on the interior surface of polyethylene terephthalate (PET) and acrylic bottles. Titania was solvent deposited on the interior of commercially available PET bottles, as well as bottles that were constructed from acrylic. Uncoated and titania-coated acrylic bottles removed 3,000,000–5,000,000 colony forming units per milliliter of K12 E. coli from 670 mL of contaminated water in 40 min of solar irradiance. After five hours of sunlight exposure, the concentration of 10 ppm methyl orange (a representative organic water contaminant), was reduced by 61% using the titania-coated acrylic bottles. The concentration of 87 ppb microcystin-LR (a representative algal toxin) was reduced by 70% after 7 hours of sunlight exposure in the titania-coated acrylic bottles. Acrylic is an effective alternative to PET for use in the SODIS method due to its greater UV transparency. The addition of titania to PET and acrylic bottles confers the ability to remove chemical contaminants in addition to inactivating microbiological contaminants.


2009 ◽  
Vol 132 (1) ◽  
Author(s):  
Juan Rodríguez ◽  
Clido Jorge ◽  
Patricia Zúñiga ◽  
Javier Palomino ◽  
Pedro Zanabria ◽  
...  

Solar water disinfection was performed using TiO2 and a Ru(II) complex as fixed catalysts located in a compound parabolic collector photoreactor. Studies were performed in the laboratory as well as at a greenfield site. Under laboratory conditions, natural water contaminated with cultured bacteria was photocatalytically treated and the influence of the photolysis as well as of both catalysts was studied. Experiments were performed with contaminated water flowing at 12 l/min; under these conditions, photocatalytic experiments performed with a supported heterogeneous photocatalyst (Ahlstrom paper impregnated with TiO2) showed it to be effective in degrading bacteria in water. The Ru complex catalyst, however, showed no clear evidence for disinfecting water, and its efficiency was comparable to the simple photolysis. Under on-site experiments, bacteria contaminated water from the Yaurisque river at Cusco, Peru was treated. As a general trend, after photocatalytic treatment a reduction in the E-coli population present in water was observed. Whenever disinfection was achieved in the experiments, no regrowth of bacteria was observed after 24 h. However, a reduction in the prototype efficiency was observed both in laboratory and on-site experiments. This was ascribed to aging of the photocatalyst as well as due to the deposition of particles onto its surface. In cases in which incomplete disinfection resulted, a low rate of E-coli growth was observed 24 h after ending the experiment. However, pseudomones seem to be resistant to the treatment.


2021 ◽  
Vol 419 ◽  
pp. 129889
Author(s):  
José Moreno-SanSegundo ◽  
Stefanos Giannakis ◽  
Sofia Samoili ◽  
Giulio Farinelli ◽  
Kevin G. McGuigan ◽  
...  

2020 ◽  
Vol 399 ◽  
pp. 125852 ◽  
Author(s):  
Ángela García-Gil ◽  
Rafael Valverde ◽  
Rafael A. García-Muñoz ◽  
Kevin G. McGuigan ◽  
Javier Marugán

Parasitology ◽  
2009 ◽  
Vol 136 (4) ◽  
pp. 393-399 ◽  
Author(s):  
H. GÓMEZ-COUSO ◽  
M. FONTÁN-SAINZ ◽  
J. FERNÁNDEZ-ALONSO ◽  
E. ARES-MAZÁS

SUMMARYSpecies belonging to the generaCryptosporidiumare recognized as waterborne pathogens. Solar water disinfection (SODIS) is a simple method that involves the use of solar radiation to destroy pathogenic microorganisms that cause waterborne diseases. A notable increase in water temperature and the existence of a large number of empty or partially excysted (i.e. unviable) oocysts have been observed in previous SODIS studies with water experimentally contaminated withCryptosporidium parvumoocysts under field conditions. The aim of the present study was to evaluate the effect of the temperatures that can be reached during exposure of water samples to natural sunlight (37–50°C), on the excystation ofC. parvumin the absence of other stimuli. In samples exposed to 40–48°C, a gradual increase in the percentage of excystation was observed as the time of exposure increased and a maximum of 53·81% of excystation was obtained on exposure of the water to a temperature of 46°C for 12 h (versus8·80% initial isolate). Under such conditions, the oocyst infectivity evaluated in a neonatal murine model decreased statistically with respect to the initial isolate (19·38%versus100%). The results demonstrate the important effect of the temperature on the excystation ofC. parvumand therefore on its viability and infectivity.


2021 ◽  
Author(s):  
Paloma Ozores Diez ◽  
M. Inmaculada Polo-López ◽  
Azahara Martínez-García ◽  
Monique Waso ◽  
Brandon Reyneke ◽  
...  

Abstract Solar water disinfection (SODIS) is a cost-effective point of use method for disinfecting water, usually in a 2 L polyethylene terephthalate (PET) plastic bottle. To increase the volume of water disinfected, three novel transparent reactors were developed using PET in 25 L transparent jerrycans, polymethyl methacrylate (PMMA) in tubular solar reactors capable of delivering >20 L of water and polypropylene (PP) in 20 L buckets. In vitro bioassays were used to investigate any toxic substances leached from the plastic reactors into disinfected water as a result of exposure to sunshine for up to 9 months. The Ames test was used to test for mutagenicity and the E-screen bioassay to test for estrogenicity. No mutagenicity was detected in any sample and no estrogenicity was found in the SODIS treated water produced by the PMMA reactors or the PP buckets. While water disinfected using the PET reactors showed no estrogenicity following exposure to the sun for 3 and 6 months, estrogenicity was detected following 9 months' exposure to sunlight; however levels detected were within the acceptable daily intake for 17β-estradiol (E2) of up to 50 ng/kg body weight/day.


2018 ◽  
Vol 2 (12) ◽  
pp. 1800052 ◽  
Author(s):  
Depanjan Sarkar ◽  
Biswajit Mondal ◽  
Anirban Som ◽  
Swathy Jakka Ravindran ◽  
Sourav Kanti Jana ◽  
...  

2018 ◽  
Vol 41 (3) ◽  
pp. 349-356 ◽  
Author(s):  
Supamas Danwittayakul ◽  
Supachai Songngam ◽  
Sittha Sukkasi

2007 ◽  
Vol 56 (4) ◽  
pp. 245-256 ◽  
Author(s):  
Simon Dejung ◽  
Ivan Fuentes ◽  
Gabriela Almanza ◽  
Ruth Jarro ◽  
Lizeth Navarro ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document