solar water disinfection
Recently Published Documents


TOTAL DOCUMENTS

105
(FIVE YEARS 25)

H-INDEX

20
(FIVE YEARS 3)

Author(s):  
Guilherme Otávio Rosa e Silva ◽  
Helen Oliveira Loureiro ◽  
Laura Guimarães Soares ◽  
Laura Hamdan de Andrade ◽  
Rana Gabriela Lacerda Santos

Abstract Drinking water consumption is essential to maintain a good quality of life, but it is not available for all communities. Therefore, this work aimed to develop an alternative and accessible process for water treatment, based on filtration and solar disinfection, and evaluate it in both bench and pilot scales. The construction cost of the system was estimated and compared with other available options so that its economic viability could be discussed. For this purpose, water from a stream was collected and analyzed. A filter made of PVC tubes, sand, and gravel was built, acting, respectively, as a column, filtering medium, and support layer. As for the disinfection process, the SODIS (Solar Water Disinfection) methodology was adopted. The water was exposed to the sun, and the best exposure time was determined based on the analysis of total coliforms and E. coli. Finally, a prototype was built for a flow rate of 37.5 L d−1, consisting of two filters operating at a filtration rate of 2.38 m3 m−2 d−1. About 97% turbidity removal was obtained, as well as 99.9% for total coliforms and 99.1% for E. coli. It is estimated that the cost of building a water treatment system for one person is approximately USD 29.00.


Author(s):  
Menta Ballesteros ◽  
Celeste Brindley ◽  
José Antonio Sánchez-Pérez ◽  
Pilar Fernández-Ibañez

“Ensure access to water for all”, states Goal 6 of the UN’s Sustainable Development Goals. This worldwide challenge requires identifying the best water disinfection method for each scenario. Traditional methods have limitations, which include low effectiveness towards certain pathogens and the formation of disinfection byproducts. Solar-driven methods, such as solar water disinfection (SODIS) or solar photocatalysis, are novel, effective, and financially and environmentally sustainable alternatives. We have conducted a critical study of publications in the field of water disinfection using solar energy and, hereby, present the first bibliometric analysis of scientific literature from Elsevier’s Scopus database within the last 20 years. Results show that in this area of growing interest USA, Spain, and China are the most productive countries in terms of publishing, yet Europe hosts the most highly recognized research groups, i.e., Spain, Switzerland, Ireland, and UK. We have also reviewed the journals in which researchers mostly publish and, using a systematic approach to determine the actual research trends and gaps, we have analyzed the capacity of these publications to answer key research questions, pinpointing six clusters of keywords in relation to the main research challenges, open areas, and new applications that lie ahead. Most publications focused on SODIS and photocatalytic nanomaterials, while a limited number focused on ensuring adequate water disinfection levels, testing regulated microbial indicators and emerging pathogens, and real-world applications, which include complex matrices, large scale processes, and exhaustive cost evaluation.


2021 ◽  
Vol 419 ◽  
pp. 129889
Author(s):  
José Moreno-SanSegundo ◽  
Stefanos Giannakis ◽  
Sofia Samoili ◽  
Giulio Farinelli ◽  
Kevin G. McGuigan ◽  
...  

2021 ◽  
Author(s):  
Paloma Ozores Diez ◽  
M. Inmaculada Polo-López ◽  
Azahara Martínez-García ◽  
Monique Waso ◽  
Brandon Reyneke ◽  
...  

Abstract Solar water disinfection (SODIS) is a cost-effective point of use method for disinfecting water, usually in a 2 L polyethylene terephthalate (PET) plastic bottle. To increase the volume of water disinfected, three novel transparent reactors were developed using PET in 25 L transparent jerrycans, polymethyl methacrylate (PMMA) in tubular solar reactors capable of delivering >20 L of water and polypropylene (PP) in 20 L buckets. In vitro bioassays were used to investigate any toxic substances leached from the plastic reactors into disinfected water as a result of exposure to sunshine for up to 9 months. The Ames test was used to test for mutagenicity and the E-screen bioassay to test for estrogenicity. No mutagenicity was detected in any sample and no estrogenicity was found in the SODIS treated water produced by the PMMA reactors or the PP buckets. While water disinfected using the PET reactors showed no estrogenicity following exposure to the sun for 3 and 6 months, estrogenicity was detected following 9 months' exposure to sunlight; however levels detected were within the acceptable daily intake for 17β-estradiol (E2) of up to 50 ng/kg body weight/day.


Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3431
Author(s):  
Ángela García-Gil ◽  
Rafael A. García-Muñoz ◽  
Kevin G. McGuigan ◽  
Javier Marugán

Solar water disinfection (SODIS) is one the cheapest and most suitable treatments to produce safe drinking water at the household level in resource-poor settings. This review introduces the main parameters that influence the SODIS process and how new enhancements and modelling approaches can overcome some of the current drawbacks that limit its widespread adoption. Increasing the container volume can decrease the recontamination risk caused by handling several 2 L bottles. Using container materials other than polyethylene terephthalate (PET) significantly increases the efficiency of inactivation of viruses and protozoa. In addition, an overestimation of the solar exposure time is usually recommended since the process success is often influenced by many factors beyond the control of the SODIS-user. The development of accurate kinetic models is crucial for ensuring the production of safe drinking water. This work attempts to review the relevant knowledge about the impact of the SODIS variables and the techniques used to develop kinetic models described in the literature. In addition to the type and concentration of pathogens in the untreated water, an ideal kinetic model should consider all critical factors affecting the efficiency of the process, such as intensity, spectral distribution of the solar radiation, container-wall transmission spectra, ageing of the SODIS reactor material, and chemical composition of the water, since the substances in the water can play a critical role as radiation attenuators and/or sensitisers triggering the inactivation process.


2021 ◽  
Vol 20 (1) ◽  
pp. 123-137
Author(s):  
Beni Jequicene Mussengue Chaúque ◽  
Antônio Domingues Benetti ◽  
Gertrudes Corção ◽  
Carlos Eugênio Silva ◽  
Rodrigo Fernandes Gonçalves ◽  
...  

2020 ◽  
Vol 399 ◽  
pp. 125852 ◽  
Author(s):  
Ángela García-Gil ◽  
Rafael Valverde ◽  
Rafael A. García-Muñoz ◽  
Kevin G. McGuigan ◽  
Javier Marugán

Sign in / Sign up

Export Citation Format

Share Document