An innovative hybrid air pollution early-warning system based on pollutants forecasting and Extenics evaluation

2019 ◽  
Vol 164 ◽  
pp. 174-192 ◽  
Author(s):  
Ping Jiang ◽  
Chen Li ◽  
Ranran Li ◽  
Hufang Yang
2017 ◽  
Vol 68 (4) ◽  
pp. 858-863
Author(s):  
Mihaela Oprea ◽  
Marius Olteanu ◽  
Radu Teodor Ianache

Fine particulate matter with a diameter less than 2.5 �m (i.e. PM2.5) is an air pollutant of special concern for urban areas due to its potential significant negative effects on human health, especially on children and elderly people. In order to reduce these effects, new tools based on PM2.5 monitoring infrastructures tailored to specific urban regions are needed by the local and regional environmental management systems for the provision of an expert support to decision makers in air quality planning for cities and also, to inform in real time the vulnerable population when PM2.5 related air pollution episodes occur. The paper focuses on urban air pollution early warning based on PM2.5 prediction. It describes the methodology used, the prediction approach, and the experimental system developed under the ROKIDAIR project for the analysis of PM2.5 air pollution level, health impact assessment and early warning of sensitive people in the Ploiesti city. The PM2.5 concentration evolution prediction is correlated with PM2.5 air pollution and health effects analysis, and the final result is processed by the ROKIDAIR Early Warning System (EWS) and sent as a message to the affected population via email or SMS. ROKIDAIR EWS is included in the ROKIDAIR decision support system.


Author(s):  
Mo ◽  
Zhang ◽  
Li ◽  
Qu

The problem of air pollution is a persistent issue for mankind and becoming increasingly serious in recent years, which has drawn worldwide attention. Establishing a scientific and effective air quality early-warning system is really significant and important. Regretfully, previous research didn’t thoroughly explore not only air pollutant prediction but also air quality evaluation, and relevant research work is still scarce, especially in China. Therefore, a novel air quality early-warning system composed of prediction and evaluation was developed in this study. Firstly, the advanced data preprocessing technology Improved Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (ICEEMDAN) combined with the powerful swarm intelligence algorithm Whale Optimization Algorithm (WOA) and the efficient artificial neural network Extreme Learning Machine (ELM) formed the prediction model. Then the predictive results were further analyzed by the method of fuzzy comprehensive evaluation, which offered intuitive air quality information and corresponding measures. The proposed system was tested in the Jing-Jin-Ji region of China, a representative research area in the world, and the daily concentration data of six main air pollutants in Beijing, Tianjin, and Shijiazhuang for two years were used to validate the accuracy and efficiency. The results show that the prediction model is superior to other benchmark models in pollutant concentration prediction and the evaluation model is satisfactory in air quality level reporting compared with the actual status. Therefore, the proposed system is believed to play an important role in air pollution control and smart city construction all over the world in the future.


CICTP 2020 ◽  
2020 ◽  
Author(s):  
Wendi Liu ◽  
Zhiqing Zhang ◽  
Dongzhao Li ◽  
Xintong Wu

2020 ◽  
Vol 6 (2) ◽  
pp. 112
Author(s):  
Veronika Hutabarat ◽  
Enie Novieastari ◽  
Satinah Satinah

Salah satu faktor dalam meningkatkan penerapan keselamatan pasien adalah ketersediaan dan efektifitas prasarana dalam rumah sakit. Early warning system (EWS) merupakan prasarana dalam mendeteksi perubahan dini  kondisi pasien. Penatalaksanaan EWS masih kurang efektif karena parameter dan nilai rentang scorenya belum sesuai dengan kondisi pasien. Tujuan penulisan untuk mengidentifikasi efektifitas EWS dalam penerapan keselamatan pasien. Metode penulisan action research melalui proses diagnosa, planning action, intervensi, evaluasi dan  refleksi. Responden dalam penelitian ini adalah  perawat yang bertugas di area respirasi dan pasien dengan kasus kompleks respirasi di Rumah Sakit Pusat Rujukan Pernapasan Persahabatan Jakarta. Analisis masalah dilakukan dengan menggunakan diagram fishbone. Masalah yang muncul belum optimalnya implementasi early warning system dalam penerapan keselamatan pasien. Hasilnya 100% perawat mengatakan REWS membantu mendeteksi kondisi pasien, 97,4 % perawat mengatakan lebih efektif dan 92,3 % perawat mengatakan lebih efesien mendeteksi perubahan kondisi pasien. Modifikasi EWS menjadi REWS lebih efektif dan efesien dilakukan karena disesuaikan dengan jenis dan kekhususan Rumah Sakit dan berdampak terhadap kualitas asuhan keperawatan dalam menerapkan keselamatan pasien. Rekomendasi perlu dilakukan monitoring evaluasi terhadap implementasi t.erhadap implementasi REWS dan pengembangan aplikasi berbasis tehnologi


Sign in / Sign up

Export Citation Format

Share Document