Condition-based optimization of non-identical inspection intervals for a k-out-of-n load sharing system with hybrid mixed redundancy strategy

2022 ◽  
pp. 108153
Author(s):  
Mani Sharifi ◽  
Sharareh Taghipour ◽  
Abdolreza Abhari
Keyword(s):  
Author(s):  
Juliana Emery Silva ◽  
Brenno Tavares Duarte ◽  
Rodrigo Ribeiro Pinho Rodarte ◽  
Paulo Pedro Kenedi
Keyword(s):  

2021 ◽  
Vol 53 (1) ◽  
pp. 107-132
Author(s):  
Tomasz Rychlik ◽  
Fabio Spizzichino

AbstractWe study the distributions of component and system lifetimes under the time-homogeneous load-sharing model, where the multivariate conditional hazard rates of working components depend only on the set of failed components, and not on their failure moments or the time elapsed from the start of system operation. Then we analyze its time-heterogeneous extension, in which the distributions of consecutive failure times, single component lifetimes, and system lifetimes coincide with mixtures of distributions of generalized order statistics. Finally we focus on some specific forms of the time-nonhomogeneous load-sharing model.


Author(s):  
Sheng-Jia Ruan ◽  
Yan-Hui Lin

Standby redundancy can meet system safety requirements in industries with high reliability standards. To evaluate reliability of standby systems, failure dependency among components has to be considered especially when systems have load-sharing characteristics. In this paper, a reliability analysis and state transfer scheduling optimization framework is proposed for the load-sharing 1-out-of- N: G system equipped with M warm standby components and subject to continuous degradation process. First, the system reliability function considering multiple dependent components is derived in a recursive way. Then, a Monte Carlo method is developed and the closed Newton-Cotes quadrature rule is invoked for the system reliability quantification. Besides, likelihood functions are constructed based on the measurement information to estimate the model parameters of both active and standby components, whose degradation paths are modeled by the step-wise drifted Wiener processes. Finally, the system state transfer scheduling is optimized by the genetic algorithm to maximize the system reliability at mission time. The proposed methodology and its effectiveness are illustrated through a case study referring to a simplified aircraft hydraulic system.


Sign in / Sign up

Export Citation Format

Share Document