scholarly journals Landscape level planning in alluvial riparian floodplain ecosystems: Using geomorphic modeling to avoid conflicts between human infrastructure and habitat conservation

2007 ◽  
Vol 79 (3-4) ◽  
pp. 338-346 ◽  
Author(s):  
Eric W. Larsen ◽  
Evan H. Girvetz ◽  
Alexander K. Fremier
10.1596/25764 ◽  
2016 ◽  
Author(s):  
Andrew Martin Tarter ◽  
Katie Kennedy Freeman ◽  
Klas Sander

2003 ◽  
Author(s):  
Michael A. Larson ◽  
William D. Dijak ◽  
Frank R. III Thompson ◽  
Joshua J. Millspaugh

2021 ◽  
Vol 13 (9) ◽  
pp. 5013
Author(s):  
Dan Zhu ◽  
Degang Yang

Identifying how policy, socioeconomic factors, and environmental factors influence changes in human well-being (HWB) and conservation efficiency is important for ecological management and sustainable development, especially in the Giant Panda National Park (GPNP). In this study, we systematically analyzed the differences in the conservation status of the giant panda habitat and changes in HWB over 15 years in the GPNP, which includes six mountain sites, Minshan (MS), Qionglai (QLS), Xiaoxiangling (XXL), Liangshan (LS), Qinling (QL), and Daxiangling (DXL). Redundancy analyses were used to determine the factors contributing (policy, socioeconomic factors, and environmental factors) to HWB and giant panda habitat conservation (HC). In addition, using a structural equation model (SEM), we investigated the relationship between the aforementioned three factors and their direct and indirect effects on HWB and HC. The results indicated that there was spatiotemporal heterogeneity of HWB and HC in our study area. There was an increasing number of plant species as well as an increased number of giant panda in GPNP. Generally, HWB in 2015 showed an increasing trend compared with that in 2000. Socioeconomic factors (23.6%) have the biggest influence on HWB and HC, followed by policy (23.2%) and environmental factors (19.4%). Conservation policy had a significantly positive influence on HWB (0.52), while it negatively influenced HC (−0.15). Socioeconomic factors significantly negatively influenced HWB (−0.38). The formulation and implementation of policies to promote economic development will contribute to the protection of giant pandas and their habitat. Our results provide insight on the conservation status of the giant panda habitat, HWB, and factors influencing them in different mountain sites in the GPNP, as well as having implications for the future management of the GPNP.


2021 ◽  
pp. e01739
Author(s):  
Sakiko Yano ◽  
Ryota Aoyagi ◽  
Fujiki Shogoro ◽  
John B. Sugau ◽  
Joan T. Pereira ◽  
...  

Author(s):  
Tanoy Mukherjee ◽  
Vandana Sharma ◽  
Lalit Kumar Sharma ◽  
Mukesh Thakur ◽  
Bheem Dutt Joshi ◽  
...  

2007 ◽  
Vol 16 (18) ◽  
pp. 3801-3813 ◽  
Author(s):  
STÉPHANE FÉNART ◽  
FRÉDÉRIC AUSTERLITZ ◽  
JOËL CUGUEN ◽  
JEAN-FRANÇOIS ARNAUD

2019 ◽  
Vol 29 (6) ◽  
Author(s):  
E. L. Mize ◽  
R. A. Erickson ◽  
C. M. Merkes ◽  
N. Berndt ◽  
K. Bockrath ◽  
...  

1996 ◽  
Vol 26 (8) ◽  
pp. 1416-1425 ◽  
Author(s):  
Pete Bettinger ◽  
Gay A. Bradshaw ◽  
George W. Weaver

The effects of geographic information system (GIS) data conversion on several polygon-and landscape-level indices were evaluated by using a GIS vegetation coverage from eastern Oregon, U.S.A. A vector–raster–vector conversion process was used to examine changes in GIS data. This process is widely used for data input (digital scanning of vector maps) and somewhat less widely used for data conversion (output of GIS data to specific formats). Most measures were sensitive to the grid cell size used in the conversion process. At the polygon level, using the conversion process with grid cell sizes of 3.05, 6.10, and 10 m produced relatively small changes to the original polygons in terms of ln(polygon area), ln(polygon perimeter), and 1/(fractal dimension). When grid cell size increased to 20 and 30 m, however, polygons were significantly different (p < 0.05) according to these polygon-level indices. At the landscape level, the number of polygons, polygon size coefficient of variation (CV), and edge density increased, while mean polygon size and an interspersion and juxtaposition index (IJI) decreased. The youngest and oldest age-class polygons followed the trends of overall landscape only in terms of number of polygons, mean polygon size, CV, and IJI. One major side effect of the conversion process was that many small polygons were produced in and around narrow areas of the original polygons. An alleviation process (referred to as the dissolving process) was used to dissolve the boundaries between similarly attributed polygons. When we used the dissolving process, the rate of change for landscape-level indices slowed; although the number of polygons and CV still increased with larger grid cell sizes, the increase was less than when the dissolving process was not used. Mean polygon size, edge density, and fractal dimension decreased after use of the dissolving process. Trends for the youngest and oldest age-class polygons were similar to those for the total landscape, except that IJI was greater for these age-classes than for the total landscape.


2016 ◽  
Vol 25 (4) ◽  
pp. 528-541 ◽  
Author(s):  
Carl Stenoien ◽  
Kelly R. Nail ◽  
Jacinta M. Zalucki ◽  
Hazel Parry ◽  
Karen S. Oberhauser ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document