Modeling spatial variations of urban growth patterns in Chinese cities: The case of Nanjing

2009 ◽  
Vol 91 (2) ◽  
pp. 51-64 ◽  
Author(s):  
Jun Luo ◽  
Y.H. Dennis Wei
2019 ◽  
Vol 1 ◽  
pp. 1-1
Author(s):  
Ting Liu ◽  
Xiaojun Yang

<p><strong>Abstract.</strong> As the capital city and one of the largest cities of China, Beijing has experienced rapid urban growth in the past several decades. Despite the numerous research efforts of monitoring the spatiotemporal urban growth patterns in Beijing, there is a lack of consensus and comparable results for theory development or decision-making.</p><p>This paper presents a systematic approach of characterizing urban growth patterns in Beijing through spatial analysis and geovisualization. Specifically, we focus on characterizing the different dimensions of urban growth across scales, including density, continuity, direction, and centrality (Galster et al. 2001). We first derive general land cover information in Beijing from satellite imagery for the years of 1998, 2008, and 2018. The urban extent of Beijing is extracted for each year to be used for further analysis. We then characterize the urban growth patterns through various geovisualization and spatial analysis techniques at both the metropolitan level and the local/cell level (Table 1).</p><p>At the metropolitan level, we present the general trends of urban growth patterns in Beijing through landscape pattern metrics and spatial statistics. In addition, we compare the measurements of density, continuity and direction across the four functional zones in Beijing, i.e., urban core, extensive urban, new urban, and ecological conservation zone. The result reveals the regional variations and the underlying processes of urban growth in the Beijing metropolitan area. At the local level, we measure the spatial variations of urban growth patterns using a GIS-based moving windows analysis. As the moving window passes over the landscape, each calculated metrics is returned to the focal cell. This creates a surface representation of the selected metrics, which enables the creation of a contour map. The distribution of the contours delineates the spatial variations of urban growth at a finer scale. The developed approach can be applied to urban studies of other geographic areas, which will eventually lead to a comparative study of urban development.</p>


2019 ◽  
Vol 1 ◽  
pp. 1-1
Author(s):  
Shyamantha Subasinghe

<p><strong>Abstract.</strong> Urban growth is a complex process created through the interaction of human and environmental conditions. The spatial configuration and dynamic process of urban growth is an important topic in contemporary geographical studies (Thapa and Murayama, 2010). However, urban growth pattern recognition is a challengeable task and it has become one of the major fields in Cartography. Since classical era of cartography, several methods have been employed in modelling and urban growth pattern recognition. It shows that there is no agreement among cartographer or any other spatial scientists on how to map the diverse patterns of urban growth.</p><p>Typical urban theories such as von Thünen’s (1826) bid-rent theory, Burgess’s (1925) concentric zone model, Christaller’s (1933) central place theory, and Hoyt’s (1939) sector model explain the urban structure in different manner. Most of them do not contribute to visualize the urban growth pattern spatiotemporally. Recently, by addressing this limitations, several sophisticated methods are used in urban growth visualization. Among them, morphological spatial pattern analysis (MSPA) is one of emerging raster data analysis methods which allows us to integrate neighbourhood interaction rules in urban growth pattern recognition and visualization. Angel et al. (2010) developed urban land classification (urban, suburban, rural, fringe open space, exterior open space, and rural open space) based on built and non-built land categories and detected three major types of urban growth (infill, extension, and leapfrog). However, developing urban land classifications using binary land use type and recognising only three types of urban growth pattern may be insufficient due to the existence of a higher complexity of urban growth. In such context, the present study introduce a geovisualization approach to map spatial patterns of urban growth using multiple land categories and develops three sub-levels of urban growth pattern for each major urban growth pattern.</p><p>The entire process of urban growth pattern recognition developed in this study can be summarized into three steps (Figure 1): (1) urban land mapping &amp;ndash; Landsat imageries representing two time points (2001 and 2017) were classified into two land categories (built and non-built) and developed into multiple classes using ancillary data, (2) recognizing three major patterns of urban growth (infill, extension, and leapfrog) &amp;ndash; the raster overlay method based on neighbourhood interaction rules, (3) development of sublevels of urban growth &amp;ndash; major three patterns were further developed and visualized nine urban growth patterns, namely low infill (LI), moderate infill (MI), high infill (HI), low extension (LE), moderate extension (ME), high extension (HE), low leapfrog (LL), moderate leapfrog (ML), and high leapfrog (HL). The developed procedure of this study in urban growth pattern recognition was tested using a case study of Colombo metropolitan area, Sri Lanka.</p>


Cities ◽  
2013 ◽  
Vol 32 ◽  
pp. 33-42 ◽  
Author(s):  
Jamal Jokar Arsanjani ◽  
Marco Helbich ◽  
Eric de Noronha Vaz

2019 ◽  
Vol 39 (1) ◽  
pp. 45-57 ◽  
Author(s):  
Eléonore Wolff ◽  
Taïs Grippa ◽  
Yann Forget ◽  
Stefanos Georganos ◽  
Sabine Vanhuysse ◽  
...  

1999 ◽  
Vol 72 (1) ◽  
pp. 88
Author(s):  
Rhoads Murphey ◽  
Shahid Yusuf ◽  
Weiping Wu
Keyword(s):  

Author(s):  
Haitem M Almdhun ◽  
Shadi K Mallak ◽  
Maher M Aburas ◽  
Md Azlin Md Said ◽  
Seyed Mohammadreza Ghadiri
Keyword(s):  

1998 ◽  
Vol 58 (6) ◽  
pp. 7054-7062 ◽  
Author(s):  
Hernán A. Makse ◽  
José S. Andrade ◽  
Michael Batty ◽  
Shlomo Havlin ◽  
H. Eugene Stanley

Sign in / Sign up

Export Citation Format

Share Document