spatiotemporal simulation
Recently Published Documents


TOTAL DOCUMENTS

27
(FIVE YEARS 6)

H-INDEX

7
(FIVE YEARS 1)

2022 ◽  
Vol 14 (2) ◽  
pp. 246
Author(s):  
Noel Ivan Ulloa ◽  
Sang-Ho Yun ◽  
Shou-Hao Chiang ◽  
Ryoichi Furuta

The synthetic aperture radar (SAR) imagery has been widely applied for flooding mapping based on change detection approaches. However, errors in the mapping result are expected since not all land-cover changes are flood-induced, and those changes are sensitive to SAR data, such as crop growth or harvest over agricultural lands, clearance of forested areas, and/or modifications on the urban landscape. This study, therefore, incorporated historical SAR images to boost the detection of flood-induced changes during extreme weather events, using the Long Short-Term Memory (LSTM) method. Additionally, to incorporate the spatial signatures for the change detection, we applied a deep learning-based spatiotemporal simulation framework, Convolutional Long Short-Term Memory (ConvLSTM), for simulating a synthetic image using Sentinel One intensity time series. This synthetic image will be prepared in advance of flood events, and then it can be used to detect flood areas using change detection when the post-image is available. Practically, significant divergence between the synthetic image and post-image is expected over inundated zones, which can be mapped by applying thresholds to the Delta image (synthetic image minus post-image). We trained and tested our model on three events from Australia, Brazil, and Mozambique. The generated Flood Proxy Maps were compared against reference data derived from Sentinel Two and Planet Labs optical data. To corroborate the effectiveness of the proposed methods, we also generated Delta products for two baseline models (closest post-image minus pre-image and historical mean minus post-image) and two LSTM architectures: normal LSTM and ConvLSTM. Results show that thresholding of ConvLSTM Delta yielded the highest Cohen’s Kappa coefficients in all study cases: 0.92 for Australia, 0.78 for Mozambique, and 0.68 for Brazil. Lower Kappa values obtained in the Mozambique case can be subject to the topographic effect on SAR imagery. These results still confirm the benefits in terms of classification accuracy that convolutional operations provide in time series analysis of satellite data employing spatially correlated information in a deep learning framework.


FLORESTA ◽  
2020 ◽  
Vol 50 (4) ◽  
pp. 1864
Author(s):  
Letícia Guarnier ◽  
Fabricia Benda Oliveira ◽  
Carlos Henrique Rodrigues de Oliveira ◽  
Vicente Sombra da Fonseca

The Atlantic Forest is intensely fragmented and this fragmentation process has caused an expressive increase of forest remnants and, consequently, increased edge effect with different physical-biological intensities in the transition areas between the patch and the matrix. This study used landscape metrics to understand and analyze how different edge effect distances affect the structure of the forest landscape in the Barra Seca River basin (ES), in 1985, 1996, 2006 and 2016. Remote sensing images were processed and using the Bhattacharya algorithm with supervised classification, the forest patches of the study area were classified and isolated. Landscape ecology metrics were computed with Patch Analyst and V-Late 2 Beta extensions. The forest patches were divided into four size classes as follows smaller than 5 ha (C1); between 5 and 10 ha (C2); between 10 and 100 ha (C3); and over 100 ha (C4). The edge effect simulation using landscape metrics was performed using the edge effect distances of 20, 40, 60, 80, 100, 140, and 200 m. Forest fragmentation increased between 1985 and 2016 while the number of patches greater than 100 ha decreased. Currently, the basin landscape consists mainly of small patches, which have larger relative areas affected by edge effect while many patches smaller than 10 ha are completely dominated by edge effect for distances greater than 60 meters. The edge effect simulation for different distances allowed verifying the intensification of the edge effect on the forest patches of the Barra Seca River basin.


2018 ◽  
Vol 93 ◽  
pp. 687-696
Author(s):  
Likun Liang ◽  
Xuan Ru ◽  
Jingyue Wei ◽  
Zhudong Lin ◽  
Chaohai Wei ◽  
...  

2017 ◽  
Vol 50 (1-2) ◽  
pp. 1-15 ◽  
Author(s):  
M. A. Ben Alaya ◽  
T. B. M. J. Ouarda ◽  
F. Chebana

Sign in / Sign up

Export Citation Format

Share Document