landscape pattern metrics
Recently Published Documents


TOTAL DOCUMENTS

36
(FIVE YEARS 12)

H-INDEX

11
(FIVE YEARS 2)

Land ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1025
Author(s):  
Yang Yi ◽  
Chen Zhang ◽  
Guilian Zhang ◽  
Luqi Xing ◽  
Qicheng Zhong ◽  
...  

The middle reaches of the Yangtze River region (MRYRR) are China’s first trans-regional urban agglomeration, located in the center of the Yangtze River Economic Belt. The MRYRR is an important ecological reserve, and its land cover changes are affected by both socio-economic development and geographical environment. In this paper, Landsat ETM/TM/OLI remote sensing images were used to monitor land use and landscape patterns from 1990 to 2015. Through supervised classification, land use transfer matrix, landscape pattern metrics and correlation analysis, the spatial-temporal patterns of land use change and its relationship with socio-economic in the study area were revealed. The results showed that: (1) the main land use types in the study area were cropland (CL) and forestland (FL), accounting for more than three-quarters of the study area. During the study period, built-up land (BL) increased, CL decreased, FL increased first and then decreased; (2) the BL expanded mainly by occupying CL and FL, and regional landscape pattern was gradually fragmented, with complex patch shape and increasing diversity and heterogeneity. Among them, the BL is gradually gathered, and the FL and CL are gradually fragmented; (3) in the past 25 years, the urbanization process in this region has been obvious, and the Gross Domestic Product (GDP) has increased by 36 times. The socioeconomic variables were positively correlated with BL, orchard (OL) and Shannon diversity index (SHID), and negatively correlated with CL, Wasteland (WL), mean patch size (MPS) and contagion size (CONTAG). The results showed that the urbanization development has a great impact on the region, and the ecological protection task is still challenging. It is necessary to protect high-quality cropland and draw a red line for ecological protection. We should strengthen the construction of ecological corridors and ecological nodes to adapt to regional sustainable development.


2021 ◽  
Author(s):  
Abigail Kaminski ◽  
Dana Marie Bauer ◽  
Kathleen P. Bell ◽  
Cynthia S. Loftin ◽  
Erik J. Nelson

Abstract Context Urban-rural gradients are useful tools when examining the influence of human disturbances on ecological, social and coupled systems, yet the most commonly used gradient definitions are based on single broad measures such as housing density or percent forest cover that fail to capture landscape patterns important for conservation. Objectives We present an approach to defining urban–rural gradients that integrates multiple landscape pattern metrics related to ecosystem processes important for natural resources and wildlife sustainability. Methods We develop a set of land cover composition and configuration metrics and then use them as inputs to a cluster analysis process that, in addition to grouping towns with similar attributes, identifies exemplar towns for each group. We compare the outcome of the cluster-based urban-rural gradient typology to outcomes for four commonly-used rule-based typologies and discuss implications for resource management and conservation. Results The resulting cluster-based typology defines five town types (urban, suburban, exurban, rural, and agricultural) and notably identifies a bifurcation along the gradient distinguishing among rural forested and agricultural towns. Landscape patterns (e.g., core and islet forests) influence where individual towns fall along the gradient. Designations of town type differ substantially among the five different typologies, particularly along the middle of the gradient. Conclusions Understanding where a town occurs along the urban-rural gradient could aid local decision-makers in prioritizing and balancing between development and conservation scenarios. Variations in outcomes among the different urban-rural gradient typologies raise concerns that broad-measure classifications do not adequately account for important landscape patterns. We suggest future urban-rural gradient studies utilize more robust classification approaches.


2021 ◽  
Vol 13 (13) ◽  
pp. 2551
Author(s):  
Wanxu Chen ◽  
Jie Zeng ◽  
Yumei Chu ◽  
Jiale Liang

In recent decades, substantial changes have occurred in the spatial structure and form of landscapes in metropolises; these have greatly impacted ecosystem provision capacities. Clarifying the impact mechanism of landscape patterns on ecosystem services can provide insights into regional ecological conservation and sustainable development measures. Although previous studies have explored the impacts of landscape patterns on ecosystem services at multiple scales, few studies have been conducted using the buffer gradient analysis approach. Using land-use/cover change data, this study measured the evolution of spatiotemporal features of landscape patterns and ecosystem services value (ESV) with 1, 2, and 3 km buffer-zone scales in Wuhan, China. Econometric models were then used to analyze the impacts of landscape patterns on ecosystem services at different buffer-zone scales. The results demonstrated that rapid urbanization in Wuhan has led to significant changes in landscape patterns, and the landscape pattern metrics exhibited significant spatial heterogeneity. The ESV in Wuhan exhibited a steady decline during the study period. Hydrological regulations and waste treatment functions contributed to the largest proportion of ESV, and raw material production functions contributed to the lowest proportion. Landscape pattern metrics exerted a significant influence on ESV; however, this influence varied greatly. The results of this study provide a new understanding of the influence mechanism of landscape patterns on ecosystem services at 1, 2, and 3 km buffer-zone scales. These findings are critical for facilitating landscape planning and regional sustainable development.


Author(s):  
Luwen Liu ◽  
Xingrong Chen ◽  
Wanxu Chen ◽  
Xinyue Ye

Clarifying the impact mechanisms of landscape patterns on ecosystem services is highly important for effective ecosystem protection, policymaking, and landscape planning. However, previous literature lacks knowledge about the impact mechanisms of landscape patterns on ecosystem services from a spatial perspective. Thus, this study measured landscape patterns and the ecosystem services value (ESV) using a series of landscape pattern metrics and an improved benefit transfer method based on land-use data from 2015. It explores the impact mechanisms of the landscape pattern metrics on the ESV using the ordinary least-squares method and spatial regression models in the middle reaches of the Yangtze River Urban Agglomerations (MRYRUA), China. We found that forestland was the main landscape type in the MRYRUA, followed by cultivated land, and the fragmentation degree of cultivated land was significantly higher than that of forestland. The findings demonstrate that landscape pattern metrics had a significant impact on ecosystem services, but could vary greatly. Moreover, ecosystem services in the MRYRUA exhibited significant spatial spillover effects and cross-regional collaborative governance was an effective means of landscape planning. This paper acts as a scientific reference and effective guidance for landscape planning and regional ecosystem conservation in MRYRUA and other similarly fast-growing urban agglomerations.


Land ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 159 ◽  
Author(s):  
Yasi Tian

As the transitional area between urban and rural areas, land-use change in suburbs is drastic, which generates negative effects on the ecological environment. However, the identification of the suburbs remains controversial. Usually, the density of the population and residential land is referenced, and the close spatial interactions between urban areas and suburbs are generally neglected. To fill this research gap, this study adopts a case study method to map the suburbs of Jiangsu based on estimating the spatial interactions. First, a regression model is built to estimate the population distribution. Second, a radiation model is utilized to evaluate the spatial interaction at a grid level. After the main urban area is identified based on the high density of the population and construction land, the interaction strength between the main urban grid and other grid areas is calculated, and the grids that share high values of interaction strength with urban grids are identified as suburban areas. Finally, the suburbs of Jiangsu in 1998 and 2018 are mapped, and the ecological landscape pattern metrics are used to verify the effects of suburban expansion. As a result, the suburban expansion of Jiangsu over the 20 years was significant, and the effects of suburban expansion on ecological land fragmentation were evident. On the basis of the results, the enlightenment of mapping suburbs on ecological landscape planning is discussed.


2020 ◽  
Vol 9 (1) ◽  
pp. 20 ◽  
Author(s):  
Yu Tian ◽  
Bingxi Liu ◽  
Yuandong Hu ◽  
Qing Xu ◽  
Ming Qu ◽  
...  

Hemeroby is an integrated indicator used to measure the impact and degree of all human interventions on ecological components or ecosystems. The constant exploitation of resources is a strong interference of human beings to the natural environment. With the depletion of non-renewable resources, some cities with resource exploitation as their main industry—“resource-based cities”—are facing great development pressure. In order to quantify the impact of human disturbance on the natural environment and provide some scientific support for policy makers of the resource-based city, we used remote sensing images and landscape pattern metrics, introduced the synthetic hemeroby index model and analyzed the relationship between human disturbance and landscape pattern during 1990–2017. The results showed that: (1) The hemeroby in Daqing continued to rise during 1990–2017, and the main factor was the continuous expansion of the construction land and the reclamation of farmland. (2) In the areas with different hemeroby, there were significant differences in landscape pattern. In the areas with high-level hemeroby, the heterogeneity of landscape pattern was low, the aggregation among patches was high, and the shape of patches was regular, whereas the landscape pattern in the areas with medium-level hemeroby was just opposite. Although the heterogeneity of landscape pattern and the aggregation among patches were high in the areas with low-level hemeroby, the complexity of landscape was low and the shape of patches was regular. (3) In the temporal dimension, the increase of hemeroby contributed to the complexity of patch shape, the decrease of the aggregation among patches, and the fragmentation of landscape pattern. In the spatial dimension, the response in landscape pattern to human disturbance was relatively insensitive in the areas with low-level hemeroby, and this response was basically same in the high-level hemeroby and the whole study areas.


2019 ◽  
Vol 1 ◽  
pp. 1-1
Author(s):  
Ting Liu ◽  
Xiaojun Yang

<p><strong>Abstract.</strong> As the capital city and one of the largest cities of China, Beijing has experienced rapid urban growth in the past several decades. Despite the numerous research efforts of monitoring the spatiotemporal urban growth patterns in Beijing, there is a lack of consensus and comparable results for theory development or decision-making.</p><p>This paper presents a systematic approach of characterizing urban growth patterns in Beijing through spatial analysis and geovisualization. Specifically, we focus on characterizing the different dimensions of urban growth across scales, including density, continuity, direction, and centrality (Galster et al. 2001). We first derive general land cover information in Beijing from satellite imagery for the years of 1998, 2008, and 2018. The urban extent of Beijing is extracted for each year to be used for further analysis. We then characterize the urban growth patterns through various geovisualization and spatial analysis techniques at both the metropolitan level and the local/cell level (Table 1).</p><p>At the metropolitan level, we present the general trends of urban growth patterns in Beijing through landscape pattern metrics and spatial statistics. In addition, we compare the measurements of density, continuity and direction across the four functional zones in Beijing, i.e., urban core, extensive urban, new urban, and ecological conservation zone. The result reveals the regional variations and the underlying processes of urban growth in the Beijing metropolitan area. At the local level, we measure the spatial variations of urban growth patterns using a GIS-based moving windows analysis. As the moving window passes over the landscape, each calculated metrics is returned to the focal cell. This creates a surface representation of the selected metrics, which enables the creation of a contour map. The distribution of the contours delineates the spatial variations of urban growth at a finer scale. The developed approach can be applied to urban studies of other geographic areas, which will eventually lead to a comparative study of urban development.</p>


Water ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1418 ◽  
Author(s):  
Yuan ◽  
Fang ◽  
Yan ◽  
Sui ◽  
Ding ◽  
...  

The Hydrologic Modeling System (HEC-HMS) and statistical analysis method were used to analyze the relationship between flood eigenvalues (i.e., flood volume and peak flow) and landscape pattern metrics. Then, the flood-landscape ecological risk index (ERI_FL) was proposed and constructed to quantitatively assess the flood-landscape ecological risk (FLER). The semivariogram method was used to spatialize the ERI_FL values. Lastly, this study analyzed the spatial–temporal change of FLER at watershed scale and at sub-basin scale, respectively. Two historical landscape distributions (i.e., 2003 and 2017) of Qinhuai River basin were used to perform this study. The results showed that there were certain relationships between landscape pattern and flood eigenvalues, and for different landscapes, the response metrics and degrees were different. FLER increased as urbanization increased. FLER change magnitude had a positive relationship with urban land percentage change magnitude. The distribution of FLER and the distribution of FLER change both showed spatial differences at watershed scale. The structural features of landscape pattern had significant effects on regional floods. In the urbanization process, avoiding forming large-scale landscape patches, improving landscape abundance, and increasing contact area between different types of landscape patches were helpful to reduce the negative effects caused by the increase of urban landscape area on flood.


Sign in / Sign up

Export Citation Format

Share Document