Forcing Germany's renewable energy targets by increased energy crop production: A challenge for regulation to secure sustainable land use practices

2014 ◽  
Vol 36 ◽  
pp. 296-306 ◽  
Author(s):  
Gerd Lupp ◽  
Reimund Steinhäußer ◽  
Anja Starick ◽  
Moritz Gies ◽  
Olaf Bastian ◽  
...  
Author(s):  
Erin Stewart Mauldin

This chapter explores the ecological regime of slavery and the land-use practices employed by farmers across the antebellum South. Despite the diverse ecologies and crop regimes of the region, most southern farmers employed a set of extensive agricultural techniques that kept the cost of farming down and helped circumvent natural limits on crop production and stock-raising. The use of shifting cultivation, free-range animal husbandry, and slaves to perform erosion control masked the environmental impacts of farmers’ actions, at least temporarily. Debates over westward expansion during the sectional crisis of the 1850s were not just about the extension of slavery, they also reflected practical concerns regarding access to new lands and fresh soil. Both were necessary for the continued profitability of farming in the South.


2018 ◽  
Vol 21 (4) ◽  
pp. 615-623 ◽  
Author(s):  
Stefan Brunzel ◽  
Jacinta Kellermann ◽  
Milen Nachev ◽  
Bernd Sures ◽  
Daniel Hering

2016 ◽  
Vol 85 ◽  
pp. 355-362 ◽  
Author(s):  
Kari Laasasenaho ◽  
Anssi Lensu ◽  
Jukka Rintala

Author(s):  
Muditha Prasannajith Perera ◽  
K. W. G. Rekha Nianthi

The Tank Cascade System is one of the unique and socially accepted land-use practices in the dry zone of Sri Lanka which has evolved since 600 B.C. The small tank builders of the historical period had a profound and unified understanding of the natural resources, regional landscape, landforms, and hydrology. Tanks and irrigation canal systems, environmental zoning, forest reservations, agro-well-based land utilization, land-sharing system (Bethma), traditional soil conservation measures have been still maintaining well in some rural areas in the dry zone. Newly developed agro-well-based agro-forestry systems and some participatory techniques are also counted as few of sustainable land-use practices. This study has provided many valuable lessons of land use planning and management from the ancient hydraulic civilization and proving that the ancient system is still appropriate for the dry zone agricultural community rather than inadequately coordinated modern efforts of land use practices.


2020 ◽  
Vol 66 (No. 10) ◽  
pp. 469-476
Author(s):  
Katalin Takács-György ◽  
Anett Lászlók ◽  
István Takács

The EU is committed to increasing the use of renewable energy sources. In the sector of transportation, the share of renewable energy is to reach 10% by 2020 and 14% by 2030, respectively, in the EU. According to the latest forecasts, the production of the first-generation biofuels made from food raw materials is showing a declining tendency in the main European producing countries. Therefore, the objective of our research is to forecast the production of some selected biofuel producing countries within the EU as well as the traditional biofuel production in Hungary. The question of land use changes due to the new regulations is crucial. Our examinations were carried out by using Verhulst’s logistic function based on the biofuel production data of EUROSTAT. The function has already reached the saturation level in Germany, France and Sweden but in the case of other examined countries, biofuel production is also in the phase of slowing growth. Furthermore, findings are also justified by the 2015 regulation that restricts the share of producing first-generation biofuels in the final energy consumption to 7% and promotes the production of advanced biofuels, thereby decreasing the indirect change in land use and increasing sustainable crop production.


2019 ◽  
Vol 48 (02) ◽  
pp. 328-358
Author(s):  
Xiaogu Li ◽  
Katherine Y. Zipp

Perennial energy crops like switchgrass that are used for biofuel production have the potential to generate various water quality benefits such as reduced nitrogen runoff. Yet the current expected returns to switchgrass are not profitable enough for these crops to be widely adopted by U.S. farmers due to relatively unstable yields, volatile revenues, and high costs of crop establishment. This study uses a dynamic economic model to investigate the uncertainties in the yields and costs of switchgrass production, in comparison with those of corn-soybeans in the Chesapeake Bay Watershed in Pennsylvania. Results indicate that farmers would be willing to convert corn-soybeans to switchgrass land use with the provision of payments for ecosystem services (PES). A targeted PES policy based on the environmental effectiveness of the crop land is found to be slightly more effective in providing nitrogen reductions than a uniform PES policy with cost savings of 8–19%. Moreover, switchgrass has the potential of providing energy supply while reducing greenhouse gases emissions.


Author(s):  
Winfried Schäfer

Introduction and Objectives The crop scientist focuses his research on high quantity and quality of yield based on a sustainable tilth. The engineer is interested in maximisation of the process efficiency. He interprets the crop scientist’s ap-proach as maximisation of photosynthesis efficiency. Objective of this paper is to support the assessment of energy crop production applying engineering sciences methods in energy accounting. Methods and results The sustainability of energy crop production is assessed by calculating the overall efficiency using rape as example. The results show that the high process energy efficiency of the rapeseed cultivation fosters com-mon acceptance of rape as energy crop. Even under Finnish climate conditions, exergy of rape crop ex-ceeds up to 11-times the energy input for production and exergy of seed up to 3.7 times. Conversion of rapeseed into fuel decreases the energy surplus. Rape methyl ester (RME) delivers still 1.2-fold the energy input for cultivation and conversion. The whole rape crop (root, straw, seed) contains 3 to 6 ‰ of the overall energy input, RME 1 to 2 ‰ only. Animal production converts rape meal feed into manure, which is suitable for anaerobic digestion together with glycerine. The biogas augments the overall efficiency additionally 0.2 to 0.5 ‰. Rape cultivation requires a 4 to 7-year crop rotation. This and the low overall efficiency make it difficult in Finland to achieve energy self-sufficiency replacing diesel fuel by RME. The technical efficiency of the photosynthesis limits the maximum energy yield and reaches up to 0.8 % in Finland. By comparison, the efficiency of a photovoltaic collector is 165 to 248-fold better than the con-version efficiency of biomass or biogas produced from rapeseed and rape straw into electric power. The efficiency of the thermal collector exceeds heat production from burning the rape crop 157 to 443-fold. However, storage and continuous production of power and heat from sun energy is very limited. For that reason, the storage of sun energy in liquid carbon hydrates is subject of present research. Conclusion Energy crop production is captivating with many win-win situations: environmentally neutral bio-fuels replace polluting fossil fuels, farmers get better prices for energy crops, the agrochemical industry gains from intensification of energy crop production, and turn over of power industry grows due to increasing energy consumption to produce agrochemicals and to process biomass into fuel. As a following, the state tax income improves too. However, better prices for mainstream energy crops may trigger export of envi-ronmental pollution at the expense of food production because higher overall efficiency in tropical coun-tries favours the import of organic raw material for bio fuel production. Yet, high process efficiencies of technical processes to convert biomass into fuel justify the production of renewable energy from organic waste and residues. Thus, agriculture should not focus on energy crop production but produce high quality food environment-friendly. The overall efficiency of energy production from energy crops will never be competitive with solar techniques. Solar collectors replace fossil fuels for heat production outside agricul-ture already now sustainable and more efficient. Research on solar-technical processes to produce liquid carbon hydrates from methane, carbon dioxide, and water powered by solar energy without diversion into photosynthesis offers much a greater potential than research on energy crop production. As a measure for sustainability of renewable energy production, the energy surplus from sun energy conversion per capita and square meter is proposed.


Water ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 1608 ◽  
Author(s):  
Evangelin Sujatha ◽  
Venkataramana Sridhar

An erosion model using the Revised Universal Soil Loss Equation (RUSLE) equation derived from the Advanced Spaceborne Thermal Emission and Reflection Global Digital Elevation Model (ASTER G-DEM) and LANDSAT 8 is presented in the study. This model can be a cost-effective, quick and less labor-intensive tool for assessing erosion in small watersheds. It can also act as a vital input for the primary assessment of environmental degradation in the region, and can aid the formulation of watershed development planning strategies. The Palar River, which drains into Shanmukha Nadi, is a small mountain watershed. The town of Kodaikanal, a popular tourist attraction in Tamilnadu, forms part of this sub-watershed. This quaint, hill-town has been subjected to intense urbanization and exhaustive changes in its land use practices for the past decade. The consequence of this change is manifested in the intense environmental degradation of the region, which results in problems such as increased numbers of landslides, intense soil erosion, forest fires and land degradation. The nature of the terrain, high precipitation, and intense agriculture exponentially increase the rate of soil erosion. Spatial prediction of soil erosion is thereby a valuable and mandatory tool for sustainable land use practices and economic development of the region. A comprehensive methodology is employed to predict the spatial variation of soil erosion using the revised soil loss equation in a geographic information system (GIS) platform. The soil erosion susceptibility map shows a maximum annual soil loss of 3345 Mg·ha−1·y−1, which correlates with scrub forests, degraded forests, steep slopes, high drainage density and shifting cultivation practices. The erosion map shows that the central region is subjected to intense erosion while the inhabited southern part is less prone to erosion. A small patch of severe soil loss is also visible on the eastern part of the northern fringe. About 4% of the sub-watershed is severely affected by soil erosion and 18% falls within a moderate erosion zone. The growing demand for land and infrastructure development forces the shift of urbanization and agriculture to these less-managed spaces. In light of this scenario, the spatial distribution of erosion combined with terrain and hydro-morphometry can aid in sustainable development and promote healthy land use practices in the region.


Sign in / Sign up

Export Citation Format

Share Document