scholarly journals Endothelial cell derived angiocrine support of acute myeloid leukemia targeted by receptor tyrosine kinase inhibition

2015 ◽  
Vol 39 (9) ◽  
pp. 984-989 ◽  
Author(s):  
Leylah Drusbosky ◽  
Eric Gars ◽  
Angelica Trujillo ◽  
Christie McGee ◽  
Amy Meacham ◽  
...  
2013 ◽  
Vol 54 (7) ◽  
pp. 1351-1352
Author(s):  
Jessica K. Altman ◽  
Amy K. Szilard ◽  
Leonidas C. Platanias

Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 1427-1427 ◽  
Author(s):  
Tristan Knight ◽  
Xinan Qiao ◽  
Holly Edwards ◽  
Hai Lin ◽  
Jeffrey W. Taub ◽  
...  

Abstract Introduction: FMS-like tyrosine kinase 3 (FLT3) is a receptor tyrosine kinase, and is mutated in approximately one third of acute myeloid leukemia (AML) patients; this mutation confers a poor prognosis. Two FLT3 mutations are commonly seen in AML: internal tandem duplications (ITD) in the juxtamembrane domain (~25% of AML), and point mutations in the receptor tyrosine kinase at codon 835 (D835) (~7% of AML). Both mutations result in constitutive FLT3 activation, causing downstream activation of multiple pathways, in particular, those involved in cell survival including the RAS-RAF-MEK-ERK, JAK-STAT5, and PI3K/AKT pathways. PI3K-AKT may also be activated by AXL, also a tyrosine kinase, via its targets PLC, Grb2, and PI3K. Logically, then, inhibition of FLT3 is a promising pharmacological approach for treating this subtype of AML. Gilteritinib (ASP-2215) is a novel dual inhibitor of FLT3 and AXL, exposure to which results in upregulation of FLT3 as a resistance mechanism. Previously, we found that the novel dual PI3K/histone deacetylase (HDAC) inhibitor CUDC-907 downregulates FLT3 expression in AML cells (Figure 1A). Additionally, inhibition of FLT3 and AXL by gilteritinib may not result in robust inactivation of both the PI3K-Akt and MEK/ERK pathways due to crosstalk between the two pathways. Thus, our hypothesis was that CUDC-907 would sensitize AML cells to gilteritinib, resulting in concurrent inhibition of all the downstream signaling pathways of FLT3 and AXL, leading to synergistic antileukemic activities again FLT3-mutated AML (Figure 1B). Methods: FLT3-ITD AML cell lines (MV4-11 and MOLM-13) and primary patient samples were treated with CUDC-907, gilteritinib, both, or neither for 24 hours, at clinically achievable concentrations. Annexin V/Propidium Iodide (PI) staining and flow cytometry analyses was performed, and combination indexes (CI) calculated; CI<1, CI=1, and CI>1 indicating synergistic, additive, or antagonistic effects, respectively. Western blots were performed after treatment for 0-24 hours to determine protein expression of relevant targets. Results: CUDC-907 and gilteritinib demonstrated potent synergistic antileukemic effects in FLT3-ITD AML cell lines and FLT3-ITD patient samples (AML#171, AML#180), the combination exceeding either in isolation (Figure 1C). These findings were confirmed via western blot, which showed accentuated upregulation of cleaved caspase3 with combination therapy, in both cell lines and one patient sample, demonstrating drug-induced apoptosis. We confirmed that CUDC-907 abolishes gilteritinib-induced expression of FLT3 in a time-dependent fashion in cell lines MV4-11 and MOLM-13 (Figure 1D). Gilteritinib treatment decreased p-AKT, p-S6, and p-STAT5, while inhibition of the ERK pathway, as assessed by p-ERK expression, varied amongst the samples (Figure 1E). CUDC-907 treatment decreased both p-AKT and p-ERK. MOLM-13 cells showed increased p-ERK following gilteritinib treatment and increased p-STAT5 after CUDC-907 treatment. In all samples, combination of gilteritinib with CUDC-907 resulted in decrease of p-STAT5 and p-S6, similar to gilteritinib treatment alone, and further reduction of p-AKT and p-ERK compared to single drug treatments. Gilteritinib treatment also reduced expression of anti-apoptotic protein Mcl-1, which was further decreased in combination treated cells. Subsequently, time-course analysis was performed in both cell lines; findings were consistent with prior observations, and confirmed that protein expression changed over time, in relation to gilteritinib/CUDC-907/combined treatment exposure. Conclusion: We confirmed that CUDC-907 and Gilteritinib synergistically induce apoptosis in both cell lines and primary patient samples derived from patients with FLT3-ITD AML, and that CUDC-907 abolishes Gilteritinib-induced FLT3 expression. Additionally, the combination cooperatively inhibits the PI3K-AKT, JAK-STAT, and RAS-RAF pathways, while preventing escape via alternative pathways. Our results provide a strong foundation for subsequent in vivo murine studies, and eventual clinical evaluation of the combination of gilteritinib and CUDC-907 for the treatment of AML. Figure 1. Figure 1. Disclosures Ge: MEI Pharma: Research Funding.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 3382-3382
Author(s):  
Katharina S. Götze ◽  
Sally Rushton ◽  
Stefanie Marz ◽  
Sabine Kayser ◽  
Konstanze Dohner ◽  
...  

Abstract Activating mutations of the FLT3 receptor by internal tandem duplication (FLT3-ITD) are present in 30% of all cases of acute myeloid leukemia (AML) and are associated with poor prognosis. FLT3-ITD mutations are present in leukemic stem/progenitor cells and induce ligand-independent downstream signaling promoting oncogenesis through pathways involved in proliferation, differentiation and survival, making the mutated receptor an attractive therapeutic target for tyrosine kinase inhibition. Although tyrosine kinase inhibitors have been shown to be cytotoxic to FLT3-ITD+ leukemic blasts, the effects on more primitive leukemic stem cells have not been studied in detail. We examined the effect of the tyrosine kinase inhibitor SU5614 on leukemic CD34+ stem/progenitor cells from patients with newly diagnosed normal karyotype AML with wild-type FLT3 or mutated FLT3-ITD receptor. SU5614 was chosen because initial experiments comparing SU5614, PKC412 and imatinib had shown that SU5614 was the most potent in inducing cell cycle arrest without significant apoptosis in normal CD34+ stem/progenitor cells. CD34+ cells were isolated from bone marrow of AML patients at diagnosis by density gradient centrifugation and magnetic bead isolation. Cells were cultured for four days in serum-free medium with growth factors in the presence or absence of SU5614 (5 uM) in suspension culture or in stroma-contact cultures. Hematopoietic activity was assessed in colony-forming assays. Overall, untreated CD34+FLT3-ITD+ leukemic progenitors cells formed significantly fewer CFU than CD34+FLT3-WT leukemic progenitors. However, the percentage of more primitive LTC-IC was higher in FLT3-ITD+ samples. SU5614 induced cell cycle arrest in all FLT3-ITD+ as well as FLT3-WT samples whereas apoptosis was variable. FLT3-ITD+ committed progenitor cells were effectively reduced by SU5614 treatment in suspension culture while stroma contact exerted a significant protective effect. In contrast, committed progenitors from FLT3-WT AML were less susceptible to tyrosine kinase inhibition but also protected by adhesion to stroma. More importantly, primitive LTC-IC from FLT3-ITD+ AML were selectively spared from tyrosine kinase inhibition. Additional stromal contact led to expansion of LTC-IC in the presence of SU5614. PCR from single hematopoietic colonies of stromal contact cultures revealed both WT and FLT3-ITD products after treatment with SU5614, indicating LTC-IC were of leukemic origin. To further elucidate the mechanism by which stromal contact selectively protects FLT3-ITD+ LTC-IC, leukemic cell lines harboring either FLT3-ITD (MV4-11) or FLT3-WT (RS 4;11) were studied. As expected, SU5614 effectively inhibited constitutively active FLT3 in MV4-11 as well as ligand activated FLT3 in RS 4;11 cell lines independent of stromal contact. However, inhibition of downstream Akt activation by SU5614 in MV4-11 cells was completely abrogated in the presence of stroma. In contrast, stromal contact had no effect on Akt activation in FLT3-WT RS 4;11 cells. Activation of downstream Erk and Stat5 and inhibition by SU5614 were not affected by stromal contact in either cell line. In conclusion, our data suggest activation of alternate signaling pathways in FLT3+ leukemic stem cells allowing escape from dependence on FLT3 signaling and subsequently tyrosine kinase inhibition. In addition, protection of leukemic FLT3-ITD+ LTC-IC is mediated by stromal contact.


Blood ◽  
2007 ◽  
Vol 109 (8) ◽  
pp. 3400-3408 ◽  
Author(s):  
Deepa B. Shankar ◽  
Junling Li ◽  
Paul Tapang ◽  
J. Owen McCall ◽  
Lori J. Pease ◽  
...  

Abstract In 15% to 30% of patients with acute myeloid leukemia (AML), aberrant proliferation is a consequence of a juxtamembrane mutation in the FLT3 gene (FMS-like tyrosine kinase 3–internal tandem duplication [FLT3-ITD]), causing constitutive kinase activity. ABT-869 (a multitargeted receptor tyrosine kinase inhibitor) inhibited the phosphorylation of FLT3, STAT5, and ERK, as well as Pim-1 expression in MV-4-11 and MOLM-13 cells (IC50 approximately 1-10 nM) harboring the FLT3-ITD. ABT-869 inhibited the proliferation of these cells (IC50 = 4 and 6 nM, respectively) through the induction of apoptosis (increased sub-G0/G1 phase, caspase activation, and PARP cleavage), whereas cells harboring wild-type (wt)–FLT3 were less sensitive. In normal human blood spiked with AML cells, ABT-869 inhibited phosphorylation of FLT3 (IC50 approximately 100 nM), STAT5, and ERK, and decreased Pim-1 expression. In methylcellulose-based colony-forming assays, ABT-869 had no significant effect up to 1000 nM on normal hematopoietic progenitor cells, whereas in AML patient samples harboring both FLT3-ITD and wt-FLT3, ABT-869 inhibited colony formation (IC50 = 100 and 1000 nM, respectively). ABT-869 dose-dependently inhibited MV-4-11 and MOLM-13 flank tumor growth, prevented tumor formation, regressed established MV-4-11 xenografts, and increased survival by 20 weeks in an MV-4-11 engraftment model. In tumors, ABT-869 inhibited FLT3 phosphorylation, induced apoptosis (transferase-mediated dUTP nick-end labeling [TUNEL]) and decreased proliferation (Ki67). ABT-869 is under clinical development for AML.


2001 ◽  
Vol 42 (3) ◽  
pp. 511-516 ◽  
Author(s):  
Srdan Verstovsek ◽  
Elihu Estey ◽  
Taghi Manshouri ◽  
Michael Keating ◽  
Hagop Kantarjian ◽  
...  

2020 ◽  
Vol 20 (7) ◽  
pp. 459-467
Author(s):  
Ahmed A. Alnagar ◽  
Asmaa A. Mahmoud ◽  
Mosaad M. EL Gammal ◽  
Naera Hamdy ◽  
Mohamed A. Samra

Sign in / Sign up

Export Citation Format

Share Document