Multiple sources for the origin of Late Jurassic Linglong adakitic granite in the Shandong Peninsula, eastern China: Zircon U–Pb geochronological, geochemical and Sr–Nd–Hf isotopic evidence

Lithos ◽  
2013 ◽  
Vol 162-163 ◽  
pp. 251-263 ◽  
Author(s):  
Liang Ma ◽  
Shao-Yong Jiang ◽  
Bao-Zhang Dai ◽  
Yao-Hui Jiang ◽  
Ming-Lan Hou ◽  
...  
2016 ◽  
Vol 13 (2) ◽  
pp. 340 ◽  
Author(s):  
Michal Sela-Adler ◽  
Ward Said-Ahmad ◽  
Orit Sivan ◽  
Werner Eckert ◽  
Ronald P. Kiene ◽  
...  

Environmental context The volatile sulfur compound, dimethylsulfide (DMS), plays a major role in the global sulfur cycle by transferring sulfur from aquatic environments to the atmosphere. Compared to marine environments, freshwater environments are under studied with respect to DMS cycling. The goal of this study was to assess the formation pathways of DMS in a freshwater lake using natural stable isotopes of sulfur. Our results provide unique sulfur isotopic evidence for the multiple DMS sources and dynamics that are linked to the various biogeochemical processes that occur in freshwater lake water columns and sediments. Abstract The volatile methylated sulfur compound, dimethylsulfide (DMS), plays a major role in the global sulfur cycle by transferring sulfur from aquatic environments to the atmosphere. The main precursor of DMS in saline environments is dimethylsulfoniopropionate (DMSP), a common osmolyte in algae. The goal of this study was to assess the formation pathways of DMS in the water column and sediments of a monomictic freshwater lake based on seasonal profiles of the concentrations and isotopic signatures of DMS and DMSP. Profiles of DMS in the epilimnion during March and June 2014 in Lake Kinneret showed sulfur isotope (δ34S) values of +15.8±2.0 per mille (‰), which were enriched by up to 4.8 ‰ compared with DMSP δ34S values in the epilimnion at that time. During the stratified period, the δ34S values of DMS in the hypolimnion decreased to –7.0 ‰, close to the δ34S values of coexisting H2S derived from dissimilatory sulfate reduction in the reduced bottom water and sediments. This suggests that H2S was methylated by unknown microbial processes to form DMS. In the hypolimnion during the stratified period DMSP was significantly 34S enriched relative to DMS reflecting its different S source, which was mostly from sulfate assimilation. In the sediments, δ34S values of DMS were depleted by 2–4 ‰ relative to porewater (HCl-extracted) DMSP and enriched relative to H2S. This observation suggests two main formation pathways for DMS in the sediment, one from the degradation of DMSP and one from methylation of H2S. The present study provides isotopic evidence for multiple sources of DMS in stratified water bodies and complex DMSP–DMS dynamics that are linked to the various biogeochemical processes within the sulfur cycle.


PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e3368 ◽  
Author(s):  
Joseph E. Peterson ◽  
Jonathan P. Warnock ◽  
Shawn L. Eberhart ◽  
Steven R. Clawson ◽  
Christopher R. Noto

The Cleveland-Lloyd Dinosaur Quarry (CLDQ) is the densest deposit of Jurassic theropod dinosaurs discovered to date. Unlike typical Jurassic bone deposits, it is dominated by the presence ofAllosaurus fragilis. Since excavation began in the 1920s, numerous hypotheses have been put forward to explain the taphonomy of CLDQ, including a predator trap, a drought assemblage, and a poison spring. In an effort to reconcile the various interpretations of the quarry and reach a consensus on the depositional history of CLDQ, new data is required to develop a robust taphonomic framework congruent with all available data. Here we present two new data sets that aid in the development of such a robust taphonomic framework for CLDQ. First, x-ray fluorescence of CLDQ sediments indicate elevated barite and sulfide minerals relative to other sediments from the Morrison Formation in the region, suggesting an ephemeral environment dominated by periods of hypereutrophic conditions during bone accumulation. Second, the degree of abrasion and hydraulic equivalency of small bone fragments dispersed throughout the matrix were analyzed from CLDQ. Results of these analyses suggest that bone fragments are autochthonous or parautochthonous and are derived from bones deposited in the assemblage rather than transported. The variability in abrasion exhibited by the fragments is most parsimoniously explained by local periodic re-working and re-deposition during seasonal fluctuations throughout the duration of the quarry assemblage. Collectively, these data support previous interpretations that the CLDQ represents an attritional assemblage in a poorly-drained overbank deposit where vertebrate remains were introduced post-mortem to an ephemeral pond during flood conditions. Furthermore, while the elevated heavy metals detected at the Cleveland-Lloyd Dinosaur Quarry are not likely the primary driver for the accumulation of carcasses, they are likely the result of multiple sources; some metals may be derived from post-depositional and diagenetic processes, and others are potentially produced from an abundance of decomposing vertebrate carcasses. These new data help to support the inferred depositional environment of the quarry as an ephemeral pond, and represent a significant step in understanding the taphonomy of the bonebed and Late Jurassic paleoecology in this region.


2017 ◽  
Vol 155 (5) ◽  
pp. 1040-1062 ◽  
Author(s):  
LI-QIANG YANG ◽  
YILDIRIM DILEK ◽  
ZHONG-LIANG WANG ◽  
ROBERTO F. WEINBERG ◽  
YUE LIU

AbstractThe Jurassic Linglong granites, intrusive into the North China Craton (NCC) in eastern China, provide a critical record of the first major episode of lithospheric-scale extension and magmatism in NE China during Mesozoic time. Our U–Pb zircon dating reveals that the Linglong granites were emplaced during 161–158 Ma, shortly after the inception of a shallow subduction of the Palaeo-Pacific plate beneath East Asia during Middle Jurassic time. These granites have high alkali contents (K2O + Na2O = 8–9 wt%), low MgO and Mg no. values and variable Cr–Ni abundances. Their relatively high Ba and Sr concentrations, relatively low heavy rare Earth element (HREE) and strongly fractionated REE patterns characterize them as high Ba–Sr granites. The negative whole-rock εNd(t) values ranging from −22.4 to −10.9 and wide-ranging zircon εHf(t) values of −39.1 to −1.5 suggest that magmas of the Linglong granites were produced by partial melting of a garnet-amphibolite-bearing lower crust of the Jiaobei Terrane and by re-melting of the Triassic ultrahigh-pressure (UHP) metamorphic rocks and alkaline suites of the Sulu Terrane. The occurrence in the granitic rocks of inherited zircons of the Neoarchaean, Palaeoproterozoic, Neoproterozoic, Palaeozoic and Triassic ages suggests that magmas of the Linglong granites interacted with the ancient crust in these terranes during their ascent. Asthenospheric upwelling, induced by the steepening and rapid rollback of the Palaeo-Pacific slab during Late Jurassic time, provided the heat source for the inferred lower crustal melting. Trench migration and thermal weakening of the crust caused extensional deformation and thinning in the eastern part of the NCC.


Sign in / Sign up

Export Citation Format

Share Document