Petrography and geochemistry of granitoids from the Samphire Pluton, South Australia: Implications for uranium mineralisation in overlying sediments

Lithos ◽  
2018 ◽  
Vol 300-301 ◽  
pp. 1-19 ◽  
Author(s):  
Urs Domnick ◽  
Nigel J. Cook ◽  
Russel Bluck ◽  
Callan Brown ◽  
Cristiana L. Ciobanu
Minerals ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 191
Author(s):  
Urs Domnick ◽  
Nigel J. Cook ◽  
Cristiana L. Ciobanu ◽  
Benjamin P. Wade ◽  
Liam Courtney-Davies ◽  
...  

The Blackbush uranium prospect (~12,580 tonnes U at 85 ppm cut-off) is located on the Eyre Peninsula of South Australia. Blackbush was discovered in 2007 and is currently the single example of sediment-hosted uranium mineralisation investigated in any detail in the Gawler Craton. Uranium is hosted within Eocene sandstones of the Kanaka Beds and, subordinately, within a massive saprolite derived from the subjacent Hiltaba-aged (~1585 Ma) granites, affiliated with the Samphire Pluton. Uranium is mainly present as coffinite in different lithologies, mineralisation styles and mineral associations. In the sandstone and saprolite, coffinite occurs intergrown with framboidal Fe-sulphides and lignite, as well as coatings around, and filling fractures within, grains of quartz. Microprobe U–Pb dating of coffinite hosted in sedimentary units yielded a narrow age range, with a weighted average of 16.98 ± 0.16 Ma (343 individual analyses), strongly indicating a single coffinite-forming event at that time. Coffinite in subjacent saprolite generated a broader age range from 28 Ma to 20 Ma. Vein-hosted coffinite yielded similar ages (from 12 to 25 Ma), albeit with a greater range. Uraninite in the vein is distinctly older (42 to 38 Ma). The 17 ± 0.16 Ma age for sandstone-hosted mineralisation roughly coincides with tectonic movement as indicated by the presence of horst and graben structures in the Eocene sedimentary rocks hosting uranium mineralisation but not in stratigraphically younger sedimentary rocks. The new ages for hydrothermal minerals support a conceptual genetic model in which uranium was initially sourced from granite bedrock, then pre-concentrated into veins within that granite, and is subsequently dissolved and reprecipitated as coffinite in younger sediments as a result of low-temperature hydrothermal activity associated with tectonic events during the Tertiary. The ages obtained here for uranium minerals within the different lithologies in the Blackbush prospect support a conceptual genetic model in which tectonic movement along the reactivated Roopena Fault, which triggered the flow of U-rich fluids into the cover sequence. The timing of mineralisation provides information that can help optimise exploration programs for analogous uranium resources within shallow buried sediments across the region. The model presented here can be predicted to apply to sediment-hosted U-mineralisation in cratons elsewhere.


2019 ◽  
Vol 3 (1-2) ◽  
pp. 103-124
Author(s):  
Gemma Tulud Cruz

Christian missionaries played an important role in the Australian nation building that started in the nineteenth century. This essay explores the multifaceted and complex cultural encounters in the context of two aboriginal missions in Australia in the nineteenth century. More specifically, the essay explores the New Norcia mission in Western Australia in 1846-1900 and the Lutheran mission in South Australia in 1838-1853. The essay begins with an overview of the history of the two missions followed by a discussion of the key faces of the cultural encounters that occurred in the course of the missions. This is followed by theological reflections on the encounters in dialogue with contemporary theology, particularly the works of Robert Schreiter.


1994 ◽  
Vol 30 (1) ◽  
pp. 23-32 ◽  
Author(s):  
John R. Argue

The water resources crisis facing countries of the Mediterranean Basin is reflected, in diminished form, in the semi-arid, “Mediterranean-climate” zone of Australia. Some creative solutions involving the collection, treatment, storage, retrieval and use of storm runoff to replace the component of mainssupplied water presently used for “second quality” purposes, are emerging in Adelaide, capital city of South Australia. The paper describes one initiative being taken to achieve source control of stormwater – quantity and quality – in mixed-density residential streets. The resulting streetscape is suitable for use in both “greenfields” and re-development projects. The paper explores the hydrological/hydraulic performance of the system and shows that it satisfies all theoretical- requirements for safety in the full range of flooding up to and including the “once in 100-years” event. The new streetscape holds the following advantages over conventional streetscapes : reduced peak outflows, greatly improved effluent water quality, aids “greening” of the landscape, potential for aquifer recharge where appropriate, aquiferretrieved groundwater can replace mains water used for irrigation, “nuisance” flows are fully contained (no surface appearance), major flows only occupy the swale, street residences are less flood prone and the streetscape fits more harmoniously into undulating terrain.


1993 ◽  
Vol 27 (1) ◽  
pp. 87-96 ◽  
Author(s):  
G. Schrale ◽  
R. Boardman ◽  
M. J. Blaskett

The Bolivar Sewage Treatment Works (STW) processes the urban and industrial sewage from the northern and eastern suburbs of Adelaide. The treatment capacity is equivalent to the sewage production of 1.1 million people. The disposal of more than 40 000 ML of reclaimed water into the sea has caused a progressive degradation of about 950 ha of seagrass beds which threatens the sustainability of the fisheries and marine ecosystems of Gulf St. Vincent. The current practice will no longer be viable to achieve compliance with the SA Marine Environment Protection Act, 1990. A Inter-Departmental Working Party recommmended that the Bolivar reclaimed water be disposed by irrigation of suitable land on the coastal plains north of Adelaide. They proposed the construction of two pipelines: a 12 km long pipeline to extend the distribution of reclaimed water in the most intense portion of the 3 500 hectares of irrigated horticulture on the Northern Adelaide Plains, and a second, 18 km long pipeline to deliver the remainder to a more northerly site for irrigation of an estimated 4 000 hectares of hardwood plantations. The paper summarizes the findings as they relate to public health, environmental, technical and financial aspects of land based disposal. Land based disposal would completely eliminate the marine degradation and also arrest the over-use of the NAP underground water resources for horticulture. The total net costs over thirty years for land based disposal are about $ 21.8 million. The ‘horticultural' pipeline of the land based disposal scheme is expected to be commercially viable. A shortfall in revenue from the afforestation component is expected and may need to be considered as an environmental cost of ceasing marine disposal.


Sign in / Sign up

Export Citation Format

Share Document