The role of clinopyroxene in amphibole fractionation of arc magmas: Evidence from mafic intrusive rocks within the Gangdese arc, southern Tibet

Lithos ◽  
2019 ◽  
Vol 338-339 ◽  
pp. 174-188 ◽  
Author(s):  
Jun Wang ◽  
Qiang Wang ◽  
Wei Dan ◽  
Jin-Hui Yang ◽  
Zong-Yong Yang ◽  
...  
2020 ◽  
Vol 105 (2) ◽  
pp. 262-275 ◽  
Author(s):  
Jin-Sheng Zhou ◽  
Zhu-Sen Yang ◽  
Zeng-Qian Hou ◽  
Qiang Wang

Abstract Amphibole fractionation during the early evolution of arc magmas has been widely inferred on the basis of distinctive geochemical fingerprints of the evolved melts, although amphibole is rarely found as a major mineral phase in arc volcanic rocks, so-called cryptic amphibole fractionation. Here, we present a detailed case study of xenoliths of amphibole-rich cumulate from the Zhazhalong intrusive suite, Gangdese arc, which enables an investigation of this differentiation process using a combination of petrological observations and in situ geochemical constraints. Evidence that the xenoliths represent fragments of igneous cumulates includes: (1) the presence of an amphibole-dominated crystal framework; (2) mineral and whole-rock Fe–Mg exchange coefficients; (3) rare-earth element patterns that are similar in the amphiboles and the xenoliths; (4) the compositions of basaltic to andesitic liquids in equilibrium with amphiboles; and (5) enrichment of the xenoliths in compatible elements and depletion in incompatible elements. The amount of trapped liquid based on La, Ce, and Dy abundances varies from ~12 to ~20%. Actinolitic cores within amphibole grains likely represent reaction between olivine precursor and hydrous melt, as evidenced by their high Cr and Ni contents. Amphibole thermometry and oxybarometry calculations indicate that crystal accumulation occurred over temperatures of 857–1014 °C, at mid-crustal pressures of 312 to 692 MPa and oxygen fugacity between 0.4 and 1.9 log units above the nickel–nickel oxide buffer. Quantification of the major-element compositions of the parent liquids indicates that the Zhazhalong amphibole cumulates crystallized from basaltic to andesitic magmas, probably with a shoshonitic affinity, and with SiO2 contents of 46.4–66.4 wt%. Appropriate partition coefficients, calculated using a parameterized lattice strain model and an empirical partitioning scheme, were employed to calculate the trace-element compositions of the liquids in equilibrium with amphibole. Our results confirm that Dy/Yb and Dy/Dy* ratios, which decrease with increasing degrees of differentiation, can be used as robust signatures of amphibole fractionation. This work presents a direct snapshot of the process of amphibole fractionation and provides a natural example of the hidden amphibole “sponge” in arc crust. In particular, this study also suggests that some appinites likely represent amphibole-rich cumulates, which may help to explain the genesis of other unusual but petrologically significant rocks.


Author(s):  
Anne-Aziliz Pelleter ◽  
Gaëlle Prouteau ◽  
Bruno Scaillet

Abstract We performed phase equilibrium experiments on a natural Ca-poor pelite at 3 GPa, 750-1000 °C, under moderately oxidizing conditions, simulating the partial melting of such lithologies in subduction zones. Experiments investigated the effect of sulphur addition on phase equilibria and compositions, with S contents of up to ∼ 2.2 wt. %. Run products were characterized for their major and trace element contents, in order to shed light on the role of sulphur on the trace element patterns of melts produced by partial melting of oceanic Ca-poor sediments. Results show that sulphur addition leads to the replacement of phengite by biotite along with the progressive consumption of garnet, which is replaced by an orthopyroxene-kyanite assemblage at the highest sulphur content investigated. All Fe-Mg silicate phases produced with sulphur, including melt, have higher MgO/(MgO+FeO) ratios (relative to S-free/poor conditions), owing to Fe being primarily locked up by sulphide in the investigated redox range. Secular infiltration of the mantle wedge by such MgO and K2O-rich melts may have contributed to the Mg and K-rich character of the modern continental crust. Addition of sulphur does not affect significantly the stability of the main accessory phases controlling the behaviour of trace elements (monazite, rutile and zircon), although our results suggest that monazite solubility is sensitive to S content at the conditions investigated. The low temperature (∼ 800 °C) S-bearing and Ca-poor sediment sourced slab melts show Th and La abundances, Th/La systematics and HFSE signatures in agreement with the characteristics of sediment-rich arc magmas. Because high S contents diminish phengite and garnet stabilities, S-rich and Ca-poor sediment sourced slab melts have higher contents of Rb, B, Li (to a lesser extent), and HREE. The highest ratios of La/Yb are observed in sulphur-poor runs (with a high proportion of garnet, which retains HREE) and beyond the monazite out curve (which retains LREE). Sulphides appear to be relatively Pb-poor and impart high Pb/Ce ratio to coexisting melts, even at high S content. Overall, our results show that Phanerozoic arc magmas from high sediment flux margins owe their geochemical signature to the subduction of terrigenous, sometimes S-rich, sediments. In contrast, subduction of such lithologies during Archean appears unlikely or unrecorded.


2020 ◽  
Author(s):  
Peter J. Pollard ◽  
Richard Jongens ◽  
Holly Stein ◽  
C. Mark Fanning ◽  
Robert Smillie

Abstract The Ok Tedi copper-gold mine in Western Province, Papua New Guinea, is situated in the western part of the Ok Tedi Complex where monzodiorite to quartz monzonite intrusions are associated with porphyry- and skarn-style copper-gold mineralization. The Pleistocene age of the intrusive rocks and mineralization provides an opportunity to study the longevity of the magmatic and hydrothermal evolution at Ok Tedi through U-Pb dating of zircon and high-precision Re-Os dating of molybdenite. Six main phases of intrusive rocks can be recognized within the mine area, with the sequence of intrusion indicated by contact relationships. Each has been dated by the SHRIMP U-Pb technique with correction for Th-U disequilibrium based on the U and Th content of each sample. In order of intrusion from oldest to youngest these include: Sydney Monzodiorite (1.368 ± 0.045 Ma), Warsaw Monzodiorite (1.269 ± 0.039 Ma), Kalgoorlie Monzodiorite (1.261 ± 0.050 Ma), Ningi Quartz Monzonite Porphyry (QMP)(1.229 ± 0.051 Ma), Bonn Quartz Monzonite (1.219 ± 0.040 Ma), and Fubilan QMP (1.213 ± 0.049 Ma). The intrusions are alkaline, high K to shoshonitic rocks with high Sr/Y ratios typical of Cu-fertile arc magmas. Chondrite-normalized REE patterns have minor or no negative Eu anomalies and downward sloping to listric-shaped HREE patterns typical of arc magmas in which high water contents supress plagioclase fractionation in favor of an evolution by hornblende ± garnet ± titanite fractionation. Cu-Au mineralization at Ok Tedi can be divided into four main stages based on crosscutting relationships: (1) skarn-endoskarn and associated vein-style mineralization in the Darai Limestone, Ieru siltstone, and Sydney Monzodiorite; (2) porphyry-style veins and breccias within the Ningi QMP and older intrusions, and at Siltstone Ridge: (3) porphyry-style veins and breccias in the Fubilan QMP and older intrusions: and (4) skarn-style mineralization in the lower part of the Darai Limestone along the Taranaki thrust. High-precision Re-Os dating of molybdenite has enabled a chronology to be established for the first three stages. Molybdenite from a quartz-mushketovite-epidote-carbonate-pyrite-chalcopyrite-molybdenite vein in clinopyroxene- and garnet-altered Sydney Monzodiorite has an age of 1.3206 ± 0.0020 Ma, and this dates the formation of the Gold Coast and Berlin skarns. Molybdenite from a quartz-pyrite-chalcopyrite-molybdenite vein in the sericite-altered Sydney Monzodiorite yields an age of 1.3166 ± 0.0043 Ma, and a quartz-pyrite-chalcopyrite-molybdenite vein with K-feldspar alteration selvages hosted in Ieru siltstone beneath the Gold Coast skarn has an age of 1.3031 ± 0.0015 Ma. Samples of molybdenite from quartz-sulfide veins from Siltstone Ridge have ages of 1.2116 ± 0.0029 and 1.2078 ± 0.0031 Ma. Molybdenite from a quartz-K-feldspar-pyrite-molybdenite vein, which overprints propylitic alteration in the Sydney Monzodiorite, has an age of 1.2120 ± 0.0024 Ma. These samples date porphyry-style mineralization in and around the Ningi QMP and at Siltstone Ridge. A sample of molybdenite from the matrix of hydrothermal intrusive breccia in the Fubilan QMP has an age of 1.2146 ± 0.0020 Ma, similar to the age of the adjacent Siltstone Ridge mineralization, and is interpreted to have been mechanically incorporated into the breccia during its formation. Several samples have been dated from the Fubilan porphyry system, including molybdenite from the matrix of a hydrothermal intrusive breccia (1.1648 ± 0.0020 Ma) and three samples from veins which postdate the breccias: a vuggy quartz-sulfide vein (1.1532 ± 0.0027 Ma), chalcopyrite-pyrite-molybdenite vein (1.1446 ± 0.0028 Ma), and duplicate analyses of a molybdenite-only vein (1.1326 ± 0.0034 and 1.1297 ± 0.0026 Ma) in agreement at 2σ. Molybdenite from a quartz-K-feldspar-biotite-magnetite-pyrite-chalcopyrite-molybdenite vein in endoskarn-altered Sydney Monzodiorite (beneath the Gold Coast skarn) has an age of 1.1459 ± 0.0012 Ma, and a similar vein without magnetite hosted in Warsaw Monzodiorite has an age of 1.1438 ± 0.0042 Ma, both within error of the chalcopyrite-pyrite-molybdenite vein in Fubilan QMP. Intrusive rocks in the Ok Tedi mine were emplaced over a period of approximately 200,000 years, with Cu-Au mineralization formed in discrete episodes of much shorter duration. The Gold Coast skarn and associated porphyry-style veins in Sydney Monzodiorite and Ieru siltstone formed in 14,000 to 21,000 years (n = 3), the Siltstone Ridge porphyry system in 2,000 to 12,000 years (n = 4), and the Fubilan porphyry system in 31,000 to 40,000 years (n = 6). The Taranaki skarn has not been dated in the mine area due to a lack of molybdenite, but geologic relationships indicate it is younger than the Fubilan QMP.


2012 ◽  
Vol 53 ◽  
pp. 67-81 ◽  
Author(s):  
Zi-Qi Jiang ◽  
Qiang Wang ◽  
Zheng-Xiang Li ◽  
Derek A. Wyman ◽  
Gong-Jian Tang ◽  
...  

2020 ◽  
Author(s):  
Liangliang Zhang ◽  
Chuanzhou Liu ◽  
Fuyuan Wu ◽  
Chang Zhang ◽  
Weiqiang Ji ◽  
...  

Geology ◽  
2021 ◽  
Author(s):  
Tian-Yu Lu ◽  
Zhen-Yu He ◽  
Reiner Klemd

High-silica (<70 wt% SiO2) magmas are usually believed to form via shallow crustal–level fractional crystallization of intermediate magmas. However, the broad applicability of this model is controversial, because the required crystal-melt separation processes have rarely been documented globally up to now. The ca. 50 Ma Nyemo composite pluton of the Gangdese batholith belt in southern Tibet, which comprises intrusive rocks with intermediate- to high-silica compositions (65–78 wt%), offers a unique opportunity for substantiating the coexistence of extracted melts and complementary silicic cumulates in one of Earth’s most complete transcrustal silicic magmatic systems. The Nyemo pluton intrusive rocks exhibit similar zircon Hf isotopic compositional ranges (mean εHf(t) = +5.7 to +8.3), suggesting a common, non-radiogenic magma source with crustal assimilation in the deep crust. Yet, these rocks have distinct geochemical characteristics. High-silica miarolitic and rapakivi granites are strongly depleted in Ba, Sr, and Eu, and their zircon trace elements show extremely low Eu/Eu* and Dy/Yb. In contrast, monzogranite is relatively enriched in Ba and Sr with minor Eu anomalies, and the zircon trace elements are characterized by relatively high Eu/Eu* and Dy/Yb. Therefore, we propose that the high-silica granites represent highly fractionated melt extracted from a mush reservoir at unusually low storage pressure (~99–119 MPa), and that the monzogranite constitutes the complementary residual silicic cumulates.


Lithos ◽  
2016 ◽  
Vol 262 ◽  
pp. 169-191 ◽  
Author(s):  
Rosemary E. Jones ◽  
Linda A. Kirstein ◽  
Simone A. Kasemann ◽  
Vanesa D. Litvak ◽  
Stella Poma ◽  
...  

2016 ◽  
Vol 121 (8) ◽  
pp. 5624-5640 ◽  
Author(s):  
Y. Su ◽  
Christian Huber ◽  
Olivier Bachmann ◽  
Zoltán Zajacz ◽  
Heather Wright ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document