Serpentinite-derived low δ7Li fluids in continental subduction zones: Constraints from the fluid metasomatic rocks (whiteschist) from the Dora-Maira Massif, Western Alps

Lithos ◽  
2019 ◽  
Vol 348-349 ◽  
pp. 105177 ◽  
Author(s):  
Ye Tian ◽  
Yilin Xiao ◽  
Yi-Xiang Chen ◽  
He Sun ◽  
Haiyang Liu ◽  
...  
Author(s):  
Giulia Consuma ◽  
Sonja Aulbach ◽  
Roberto Braga ◽  
Laure A.J. Martin ◽  
Peter Tropper ◽  
...  

2021 ◽  
Author(s):  
Marianna Corre ◽  
Martine Lanson ◽  
Arnaud Agranier ◽  
Stephane Schwartz ◽  
Fabrice Brunet ◽  
...  

<p>Magnetite (U-Th-Sm)/He dating method has a strong geodynamic significance, since it provides geochronological constraints on serpentinization episodes, which are associated to important geological processes such as ophiolite obductions, subduction zones, transform faults and fluid circulations. Although helium content that range from 0.1 pmol/g to 20 pmol/g can routinely be measured, the application of this dating technique however is still limited due to major analytical obstacles. The dissolution of a single magnetite crystal and the measurement of the U, Th and Sm present at the ppb level in the corresponding solution, remains highly challenging, especially because of the absence of magnetite standard. In order to overcome these analytical issues, two strategies have been followed, and tested on magnetite from high-pressure rocks from the Western Alps (Schwartz et al., 2020). Firstly, we purified U, Th and Sm (removing Fe and other major elements) using ion exchange columns in order to analyze samples, using smaller dilution. Secondly, we performed in-situ analyzes by laser-ablation-ICPMS. Since no solid magnetite certified standard is yet available, we synthetized our own by precipitating magnetite nanocrystals. The first quantitative results obtained by LA-ICP-MS using this synthetic material along with international glass standards, are promising. The laser-ablation technique overcomes the analytical difficulties related to sample dissolution and purification. It thus opens the path to the dating of magnetite (and also spinels) in various ultramafic rocks such as mantle xenoliths or serpentinized peridotites in ophiolites.</p><p>Schwartz S., Gautheron C., Ketcham R.A., Brunet F., Corre M., Agranier A., Pinna-Jamme R., Haurine F., Monvoin G., Riel N., 2020, Unraveling the exhumation history of high-press ure ophiolites using magnetite (U-Th-Sm)/He thermochronometry. Earth and Planetary Science Letters 543 (2020) 116359.</p>


2021 ◽  
Author(s):  
Anne Paul ◽  
Ahmed Nouibat ◽  
Liang Zhao ◽  
Stefano Solarino ◽  
Stéphane Schwartz ◽  
...  

<p>The CIFALPS receiver-function (RF) profile in the southwestern Alps provided the first seismological evidence of continental subduction in the Alps, with the detection of waves converted on the European Moho at 75-80 km depth beneath the western edge of the Po basin (Zhao et al., 2015). To complement the CIFALPS profile and enhance our knowledge of the lithospheric structure of the Western Alps, we installed CIFALPS2, a temporary network of 55 broadband seismic stations that operated for ~14 months (2018-2019) across the North-Western Alps (Zhao et al., 2018). The CIFALPS2 line runs from the Eastern Massif Central to the Ligurian coast, across the Mont-Blanc and Gran Paradiso massifs and the Ligurian Alps. Seismic stations were installed along a quasi-linear profile with a spacing of 7-10 km.</p><p>We will show 2 receiver-function CCP (common-conversion point) depth-migrated sections along the CIFALPS2 profile, the first one across the Alps, and the second one across the Ligurian Alps and the Po basin. The time-to-depth migration of RF data is based on the new 3-D Vs model of the Greater Alpine region derived by Nouibat et al. (2021) using transdimensional ambient noise tomography on a large dataset including the AlpArray seismic network. Depth sections across the Vs model are also useful for interpreting the RF CCP sections as they have striking similarities.</p><p>The images of the lithospheric structure of the NW Alps along CIFALPS2 are surprisingly different from those of the SW Alps along CIFALPS. The deepest P-to-S converted phases on the European Moho are detected at 60-65 km depth beneath the Ivrea-Verbano zone, that is 15 km less than on CIFALPS. The negative polarity converted phase interpreted as the base of the Ivrea body mantle flake on the CIFALPS section is still visible on CIFALPS2, but with a lower amplitude. The RF section confirms the existence of a jump of the European Moho of ~10 km amplitude in less than 10 km distance, which is located within a few km from the western boundary of the Mont Blanc external crystalline massif. All these observations are confirmed by the Vs model that also displays a less deep continental subduction than on CIFALPS, weaker S-wave velocities in the Ivrea body wedge, and the jump of the European Moho.</p><p>The Moho beneath the Ligurian Alps is detected at 25-30 km depth both on the RF and on the Vs depth sections. Moving northwards, this Ligurian Moho is separated from the Adriatic Moho by a puzzling S-dipping set of P-to-S converted waves with negative polarity. The crust of the Ligurian Alps is characterized by a set of north-dipping negative-polarity converted waves at 10 to 20 km depth beneath the Valosio massif, which is a small internal crystalline massif of (U)HP metamorphic rocks located north of Voltri. The similarity of this set of negative-polarity conversions to the one observed beneath the Dora Maira massif on the CIFALPS profile suggests that it may be a relic of the Alpine structure overprinted by the opening of the Ligurian sea.</p>


Elements ◽  
2021 ◽  
Vol 17 (1) ◽  
pp. 9-16
Author(s):  
Philippe Agard ◽  
Mark R. Handy

The Alps preserve abundant oceanic blueschists and eclogites that exemplify the selective preservation of fragments of relatively short-lived, small, slow-spreading North Atlantic–type ocean basins whose subducting slabs reach down to the Mantle Transition Zone at most. Whereas no subducted fragments were returned during the first half of the subduction history, those exhumed afterwards experienced conditions typical of mature subduction zones worldwide. Sedimentary-dominated units were under-plated intermittently, mostly at ~30–40 km depth. Some mafic–ultramafic-dominated units formed close to the continent were subducted to ~80 km and offscraped from the slab only a few million years before continental subduction. Spatiotemporal contrasts in burial and preservation of the fragments reveal how along-strike segmentation of the continental margin affects ocean subduction dynamics.


2020 ◽  
Vol 175 (11) ◽  
Author(s):  
Vho Alice ◽  
Rubatto Daniela ◽  
Lanari Pierre ◽  
Giuntoli Francesco ◽  
Regis Daniele ◽  
...  

Abstract Subduction zones represent one of the most critical settings for fluid recycling as a consequence of dehydration of the subducting lithosphere. A better understanding of fluid flows within and out of the subducting slab is fundamental to unravel the role of fluids during burial. In this study, major and trace element geochemistry combined with oxygen isotopes were used to investigate metasediments and eclogites from the Sesia Zone in order to reconstruct the effect of internal and external fluid pulses in a subducted continental margin. Garnet shows a variety of textures requiring dissolution–precipitation processes in presence of fluids. In polycyclic metasediments, garnet preserves a partly resorbed core, related to pre-Alpine high-temperature/low-pressure metamorphism, and one or multiple rim generations, associated with Alpine subduction metamorphism. In eclogites, garnet chemical zoning indicates monocyclic growth with no shift in oxygen isotopes from core to rim. In metasediments, pre-Alpine garnet relics show δ18O values up to 5.3 ‰ higher than the Alpine rims, while no significant variation is observed among different Alpine garnet generations within each sample. This suggests that an extensive re-equilibration with an externally-derived fluid of distinct lower δ18O occurred before, or in correspondence to, the first Alpine garnet growth, while subsequent influxes of fluid had δ18O close to equilibrium. The observed shift in garnet δ18O is attributed to a possible combination of (1) interaction with sea-water derived fluids during pre-Alpine crustal extension and (2) fluids from dehydration reactions occurring during subduction of previously hydrated rocks, such as the serpentinised lithospheric mantle or hydrated portions of the basement.


2012 ◽  
Vol 56-57 ◽  
pp. 39-54 ◽  
Author(s):  
Pierre Lanari ◽  
Stéphane Guillot ◽  
Stéphane Schwartz ◽  
Olivier Vidal ◽  
Pierre Tricart ◽  
...  

2010 ◽  
Vol 118 (4) ◽  
pp. 341-362 ◽  
Author(s):  
Eduardo Garzanti ◽  
Alberto Resentini ◽  
Giovanni Vezzoli ◽  
Sergio Andò ◽  
Marco G. Malusà ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document