Detrital Fingerprints of Fossil Continental-Subduction Zones (Axial Belt Provenance, European Alps)

2010 ◽  
Vol 118 (4) ◽  
pp. 341-362 ◽  
Author(s):  
Eduardo Garzanti ◽  
Alberto Resentini ◽  
Giovanni Vezzoli ◽  
Sergio Andò ◽  
Marco G. Malusà ◽  
...  
Geology ◽  
2021 ◽  
Author(s):  
Dominik Gudelius ◽  
Sonja Aulbach ◽  
Hans-Michael Seitz ◽  
Roberto Braga

Metasomatized mantle wedge peridotites exhumed within high-pressure terranes of continental collision zones provide unique insights into crust-mantle interaction and attendant mass transfer, which are critical to our understanding of terrestrial element cycles. Such peridotites occur in high-grade gneisses of the Ulten Zone in the European Alps and record metasomatism by crustal fluids at 330 Ma and high-pressure conditions (2.0 GPa, 850 °C) that caused a transition from coarse-grained, garnet-bearing to fine-grained, amphibole-rich rocks. We explored the effects of crustal fluids on canonically robust Lu-Hf peridotite isotope signatures in comparison with fluid-sensitive trace elements and Nd-Li isotopes. Notably, we found that a Lu-Hf pseudo-isochron is created by a decrease in bulk-rock 176Lu/177Hf from coarse- to fine-grained peridotite that is demonstrably caused by heavy rare earth element (HREE) loss during fluid-assisted, garnet-consuming, amphibole-forming reactions accompanied by enrichment in fluid-mobile elements and the addition of unradiogenic Nd. Despite close spatial relationships, some peridotite lenses record more intense fluid activity that causes complete garnet breakdown and high field strength element (HFSE) addition along with the addition of crust-derived unradiogenic Hf, as well as distinct chromatographic light REE (LREE) fractionation. We suggest that the observed geochemical and isotopic provinciality between peridotite lenses reflects different positions relative to the crustal fluid source at depth. This interpretation is supported by Li isotopes: inferred proximal peridotites show light δ7Li due to strong kinetic Li isotope fractionation (–4.7–2.0‰) that accompanies Li enrichment, whereas distal peridotites show Li contents and δ7Li similar to those of the depleted mantle (1.0–7.2‰). Thus, Earth’s mantle can acquire significant Hf-Nd-Li-isotopic heterogeneity during locally variable ingress of crustal fluids in continental subduction zones.


Author(s):  
Giulia Consuma ◽  
Sonja Aulbach ◽  
Roberto Braga ◽  
Laure A.J. Martin ◽  
Peter Tropper ◽  
...  

Elements ◽  
2021 ◽  
Vol 17 (1) ◽  
pp. 9-16
Author(s):  
Philippe Agard ◽  
Mark R. Handy

The Alps preserve abundant oceanic blueschists and eclogites that exemplify the selective preservation of fragments of relatively short-lived, small, slow-spreading North Atlantic–type ocean basins whose subducting slabs reach down to the Mantle Transition Zone at most. Whereas no subducted fragments were returned during the first half of the subduction history, those exhumed afterwards experienced conditions typical of mature subduction zones worldwide. Sedimentary-dominated units were under-plated intermittently, mostly at ~30–40 km depth. Some mafic–ultramafic-dominated units formed close to the continent were subducted to ~80 km and offscraped from the slab only a few million years before continental subduction. Spatiotemporal contrasts in burial and preservation of the fragments reveal how along-strike segmentation of the continental margin affects ocean subduction dynamics.


2021 ◽  
Author(s):  
Attila Balazs ◽  
Claudio Faccenna ◽  
Taras Gerya ◽  
Kosuke Ueda ◽  
Francesca Funiciello

<p>The dynamics of oceanic and continental subduction zones is linked to the rise and demise of forearc and backarc basins in the overriding plate. Subsidence and uplift rates of these distinct sedimentary basins are controlled by variations in plate convergence and subduction velocities and determined by lithospheric rheological structure and different lithospheric thicknesses.</p><p>In this study we conducted a series of high-resolution 2D numerical models applying the thermo-mechanical code 2DELVIS (Gerya and Yuen, 2007). The model, based on finite differences and marker-in-cell techniques, solves the mass, momentum, and energy conservation equations for incompressible media; assumes elasto-visco-plastic rheologies and involves erosion, sedimentation and hydration processes.</p><p>The models show the evolution of wedge-top basins lying on top of the accretionary wedge and retro-forearc basins in the continental overriding plate, separated by a forearc high. These forearc regions are affected by repeated compression and extension phases. Higher subsidence rates are recorded in the syncline structure of the retro-forearc basin when the slab dip angle is higher and the subduction interface is stronger and before the slab reaches the 660 km discontinuity. This implies the importance of the slab suction force as the main forcing factor creating up to 3-4 km negative dynamics topographic signals.</p><p>Extensional back-arc basins are either localized along inherited crustal or lithospheric weak zones at large distance from the forearc region or are initiated just above the hydrated mantle wedge. During trench retreat and slab roll-back the older volcanic arc area becomes part of the back-arc region. Back-arc subsidence is primarily governed by crustal and lithospheric thinning controlled by slab roll-back. Onset of continental subduction and soft collision is linked to the rapid uplift of the forearc basins; however, the back-arc region records ongoing extension. Finally, during hard collision the forarc and back-arc basins are ultimately under compression.</p><p>Our results are compared with the evolution of the Mediterranean and based on the reconstructed plate kinematics, subsidence and heat flow evolution we classify the Western and Eastern Alboran, Paola and Tyrrhenian, Transylvanian and Pannonian Basins to be genetically similar forearc–backarc basins, respectively.</p>


Sign in / Sign up

Export Citation Format

Share Document